A Two-Path Bandpass $\Sigma\Delta$ Modulator with Extended Noise Shaping

Ali Tabatabaei Kambiz Kaviani Bruce A. Wooley

Center for Integrated Systems Stanford University Stanford, CA 94305

Outline

□ Application

□ Architecture

Circuit Details

Experimental Results

Receiver with IF Digitization

- Relaxed selectivity requirements
- Requires IF sampling

Nyquist vs. Oversampled Converters

Nyquist A/D converters:

- Fast conversion rate
- Precision limited by component mismatch

Oversampled converters:

- Less sensitive to circuit nonidealities
- Low conversion rate

Noise Transfer Function

• NTF = $N_1 \times N_2 = (N_{LP})^2$

• |NTF| > 0 dB for OSR < 8

Move the Notches...

• |NTF| < 0 dB

Lowpass-Bandpass Cascaded Modulator

• NTF = $N_1 \times N_2 = N_{LP} \times N_{BP}$

Bandpass Modulator

2-2-2/2 Modulator (Lowpass)

Architectural Comparison

• 2-2-2/2 is the only architecture limited by mismatch

f_s/4 Bandpass Architecture

First Integrator

Mixer

Folded Cascode Amplifier

Comparator

Chip Micrograph

Measured SNR and SNDR

Measured Output Spectrum

Performance Summary

Sampling speed:	64 MS/s
Passband:	2 MHz centered at 16 MHz
Oversampling ratio:	16
Dynamic range:	75 dB
Max SNDR:	70 dB
Power supply:	2.5 V
Power dissipation:	110 mW
Technology:	0.25-μm, 5-metal layer
Active Area:	2.8 mm ²

Acknowledgments

- National Semiconductor Corporation
- National Science Foundation