MIDAS User Manual

Shahriar Rabii, Louis A. Williams ITI,
Bernhard E. Boser, and Bruce A. Wooley

Center for Integrated Systems
Stanford University
Stanford, CA 94305

Version 3.1
October 1997

(© Stanford University

MIDAS is a functional simulator for mixed digital and analog sampled-data sys-
tems. The first section of this manual describes the concepts behind MIDAS and
gives some short examples of its use. The following sections provide the detailed
information needed to run MIDAS.

MIDAS User Manual

Contents

1 Simulating with MIDAS

1.1
1.2
1.3
1.4
1.5
1.6

Basic Principles L.

Running

Midas

A Simple Example00 0000
The Late Output
Simulation Algorithm L.
SUMMATY . .« v v v e e e

2 Input File Format

The CONST Section
The CONTROL Section
The NETLIST Section

2.1
2.2
2.3
2.4
2.5
2.6
2.7

Example
Example
Example
Example

: A First-Order YA Modulator
: A Second-Order ¥A Modulator
: A Second-Order XA Digital Noise Shaper
: Simulating Capacitor Voltage Coefficients

3 User Defined Models
Model File Format
A Sample Model o000,

3.1
3.2
3.3
3.4
3.5
3.6
3.7

Pin Functions
Model Functions

Compiling the Model

Performance Enhancement

Some Warnings

4 Writing Advanced Models

References

Appendices

A What’s New in MIDAS 3.1

........... Contents

O I = W

10

12
13
14
15
17
19

24
24
27
27
28
29
30
30

32

36

37

37

Contentst MIDAS User Manual

B Installation 38
C Error Messages 40
D Model Library 43
abs . . . L e e 46
absint L e 47
add e e e e e e e s 48
addd . . . e e e e e e e e 49
add4int L L e e e 50
add4intN e e 51
addint L L e s 52
addintN L L e e 53
BHarris e e e e e e e e e e e 54
Blackman i i e e e e e e e e e e e e e 56
clkDelay e e 58
clkDelayint Lo e 59
complexIn. 60
consts L e e e e e s 61
COS + v v i e e e e e e e e e e e e e s e s 62
dB . .. e e 63
decimate e e e e e e e e 64
decimateint 65
delay e e 66
delayint L 67
Aft e s 68
disto e e e e e e e e e e 69
distortDiff e 71
distortIter e e e 72
div. . .o e 73
divider e e e 74
divint e e e e e 75
divintN L e 76
double2int 7
double2N e 78
double2vec e e e e 79
doubleIn e e e e e e e e e 80
XD+« v e e e e e e e e e e e e e e e 81

1

5 1 v 82
BAUSSt e e e e e e e e e e e e e 83
Hamming 34
Hanning e 86
hexin L e e e e 88
ifelse e e e e 89
ifequal L. e 90
ifgreater. L 91
ifgtelse 92
s 1 93
idrdint . . L. L e e e e e 94
impulse e e e e 95
impulseint Lo e 96
int2double 97
int2N . . L e e e e e e 98
integerIn. 99
intermod L L. e e e e e 100
limiter e e 102
limiterint 103
linfir. e e s 104
linfirint e 106
1 108
matrix2vec e e e e e e e 109
matrixIn L. e e e e e e e 110
MAX . o v v v e e e e e e e e e e e e e e e e e e 111
maxinmat L. . e e 112
maxint L e e e e e e e e 113
MAXINVEC v v i v e e e e e e e e e e 114
(1=« 115
MIN L o e e e e e e e e 116
mininmat L. L e e e 117
minint oL e e e e e e 118
MININVEC e e e e e e e e e 119
monitor L e e e e e e e 120
mul . .. L L e e e e e 121
muld e e s 122
muldint L e e e e e e 123
muldintN 124

il

Contents
.. MIDAS User Manual

v

mulint
MULIE 125
MULHEL 126
N 127
e 128
T 129
TWEPRLISO. v 130
RSO R OO e e 132
SRRSO 133
SRRSO 134
e 135
et 136
D 137
D e i 138
N emeray . : 139
e 140
B ine | 141
e mer 142
e oarins 143
B maame 144
e 145
B mieamm 146
B tmitommins 147
Bl 148
TOCTARBUIAT v 149
SETTIS 151
s 152
eSS 153
SIBIAZ. 154
AR 155
S 156
SIMCSIIT 157
sV 158
SHRCHLIT v 159
e 160
SIRCHLIT v 161
S 162
SIMIZLIS 164
............................ 166

MIDAS User Manual e e e Contents

SINZINS e e e e e e e 168
SINZoh L 170
skip . . o L e 172
skipint 173
SATE . . L e 174
SUb . . . L L e e e 175
subint L L. e e 176
subintN L e 177
tapDelay 178
tapDelayint 179
time L e e e e e e e e 180
timedint L e 181
uniform L e e e e e e e e 182
VATIaANCe . . . v v v i et e e e e e e e e e e e e e e e e e 183
vectorIn e e e e e e e 184
= o oY= S 185
ZINS o e e e e e e e e e e e e e e e e 186
zinsint L L e e e 187
ZON . . L L e e e e e e e e e e e e 188
zohint L e e e e e e e 189

MIDAS User Manual.......... ..., Simulating with MIDAS

1 Simulating with MIDAS

MIDAS is a functional simulator for sampled-data digital and analog systems. Its pur-
pose is to close the gap between an idea for an algorithm and a circuit implementation
of that algorithm. Accepting a high level functional description of a system, MIDAS
frees the designer from circuit details and yet provides the flexibility to include as
many circuit limitations as desired. Fundamental relationships between subsystem
parameters, such as the dynamic range or bandwidth of an amplifier, and the perfor-
mance of the system can quickly be examined for a variety of possible architectures.
Systems with multiple sampling intervals and nonuniform sampling are supported.

Other features of MIDAS include its computation speed, which is considerably
higher than that of a circuit simulator, and the availability of pre-defined models for
several system building blocks. The standard models provided with MIDAS include a
wide variety of linear and nonlinear system elements, as well as models for generating
test signals, such as sinusoids or Gaussian noise. Several different analysis techniques
are available to examine internal and external signals of the simulated system. These
include transient analysis, spectral analysis, distortion analysis, and the estimation
of statistical quantities such as mean, power, and probability density.

MIDAS provides two interfaces for the user. The configuration and parameters
of the simulated system and the analyses to be performed are entered by means of
an input file that builds on models for primitive functions such as adders, quantizers,
delay elements, sinusoidal or other sources, and signal analyzers. These models can
either be the standard models included with MIDAS, or user-defined models. The
second user interface is the capability to add new models to MIDAS. New models
are compiled directly into the main program, making their execution very fast. This
also makes it easy to incorporate existing code, from program libraries for example,
into new models.

1.1 Basic Principles

MIDAS deals chiefly with three entities — models, pins, and signals. Models are
connected through their pins to the signals. A list of models forms a netlist, as
illustrated in Figure 1. A simulation in MIDAS consists of multiple passes though
a netlist. We will call one pass through the netlist a simulation pass. As MIDAS
proceeds through a netlist, it executes each model. In the netlist, models can be

Simulating with MIDASo ... MIDAS User Manual

g

model |+« pins

pins signals

A
Y

model

model |+~ pins

_

Figure 1: A block diagram of the netlist.

entered in any order; MIDAS will reorder them appropriately. Executing a model
performs various operations on the signals connected to that model. Different models
may be connected to the same signal, allowing information to be passed between the
models.

The netlist is specified in a file called the input file. The syntax of the input
file is described in Section 2. Upon startup, MIDAS parses the input file, creates
appropriate data structures for the models, pins, and signals, and determines the
order of execution of the models in the netlist. It then performs the simulation
described in the input file’s netlist.

It is often desirable to run more than one simulation over a range of system
parameters using the same netlist. This can be done with one input file. Thus, we say
that an input file defines an experiment. In an experiment, there are a set of special
signals called control signals. A separate simulation is run for each combination of
control signals.

Including control signals, there are a total of three types of signals — constants,
control signals, and net signals. Constants are signals which do not change during
the entire experiment. Control signals remain constant during each simulation, but
vary between the simulations in an experiment. The values of the net signals are
determined by the models in the netlist, and thus can vary during a simulation.

MIDAS User Manual.......... ..., Simulating with MIDAS

There is also a special class of signals called invariant signals. They are signals
which do not change after the first simulation pass in a simulation. Constants and
control signals are always invariant; net signals can be invariant under the conditions
described below.

The models in a netlist are connected to signals through four different types of
pins — inputs, parameters, outputs, and late outputs. Inputs can be connected to any
of the three types of signals and are used to pass information to a model. Parameters
can only be connected to invariant signals, and are used to pass information to a
model which should not change during a simulation. Outputs and late outputs can
only be connected to net signals, and are used to obtain information from a model.
Note that a pin’s type is part of the model’s definition and as such cannot be changed
by the input file.

There are also two classes of models, algebraic and nonalgebraic. Most models
are algebraic. Nonalgebraic models include analysis models such as disto and pdf,
time-base models such as time, and models containing late outputs such as delay.
Appendix D notes all of the standard MIDAS models which are nonalgebraic. An
algebraic model whose inputs are only connected to invariant signals is said to be
an invariant model. As stated earlier, invariant signals include all constants and
control signals, and some net signals. Net signals are invariant if and only if they are
connected to the output of an invariant model.

The simulation algorithm used by MIDAS works as follows. For each simulation
pass, each model in the netlist will be executed once, but only if one of the signals
connected to one of the model’s input pins has changed since the last simulation pass.
Thus, the sampling period for a model is the interval between changes at one or more
of its inputs.

In a netlist there can be feedback loops. Every feedback loop in the netlist must
contain at least one delay. Delays are implemented using late output pins, which are
discussed in Section 1.4.

MIDAS’s simulation algorithm is discussed in more detail in Section 1.5.

1.2 Running Midas

The following discussion assumes an environment similar to the UNIX operating
system running the C-shell. To run MIDAS, the system administrator must first
install and compile the program (see Appendix B). MIDAS can then be executed in
several ways, depending on where the outputs are to be sent. It may be invoked by

midas < inputfile arguments

Simulating with MIDASo ... MIDAS User Manual

The inputfile is a MIDAS netlist containing a description of the experiment to be
performed including the system, the stimulus, and the desired analyses. Its format
is described in Section 2. MIDAS begins its output by echoing the input file to
stderr. If there are any errors in the netlist, error messages appear on stderr and
the experiment is aborted. Otherwise, the simulation proceeds and the results are
sent to stdout. Normally, stderr and stdout are connected to the screen unless
specified otherwise. Therefore, when MIDAS is executed as shown above, the results
will be seen on the computer monitor. The simulation output can be redirected to a

file with
midas < inputfile > outputfile arquments

The outputfile contains the results of the simulation. The netlist echo and error
messages still appear on the stderr, which remains connected to the screen. To
redirect both stderr and stdout to the same file, the following command may be
used

midas < inputfile >& outputfile arguments

Finally, to redirect the simulation results to outputfile and the netlist echo and error
messages to errorfile, use

(midas < inputfile > outputfile arguments) >& errorfile

The above syntax assumes the use of the C-shell. Please consult your computer
system manual for more information on redirection and file manipulation in other
environments. For backward compatibility with MIDAS version 2, the output stream
for the netlist echo and the error messages can easily be reconfigured to stdout (see
Appendix B).

The arguments are optional. They allow the MIDAS user to incorporate command
line arguments into the input file. Any occurrence of $1 in the input file is replaced
by the first argument specified on the command line, $2 by the second argument, and
SO on.

1.3 A Simple Example

Before discussing the details of MIDAS, it may be helpful to first look at a simple
example. The system we will simulate is the simple adder shown in Figure 2. This
system is implemented with the input file shown in Figure 3. The output produced
by running MIDAS on this input file is shown in Figure 4. The clock is implemented
by the model time and the “+” block is implemented by the model add.

MIDAS User Manual.......... ..., Simulating with MIDAS

t
Ou—

Figure 2: A simple system example.

CONTROL
FOR x = [1, 2];

NETLIST
time (kstart<-1, kstop<-3, k->t);
add (x1<-x, x2<-t, y->result);

print (x1<-"\nSimulation of x =", x2<-x, x3<-"\n");
print (x1<-x, x2<-" +", x3<-t, x4<-" =", xb<-result, x6<-"\n");
END

Figure 3: A simple input file.

Simulation of x = 1
1+ 1= 2
1+ 3
1+ 3= 4
Simulation of x = 2
2 + 1= 3
2 + 2 = 4
2 + 3= 5

Figure 4: The output from a simple input file.

Simulating with MIDASo ... MIDAS User Manual

delayed_t

Figure 5: A simple delay example.

The input file first defines x as a control signal. The experiment has two simu-
lations, one for each of the possible values of x. The models to be executed in each
simulation are specified in the NETLIST section. A simulation will repetitively pass
through the netlist according to a time base model such as time. In this example,
the model time steps the signal t from 1 to 3 incrementing by one on each simulation
pass. The model add places the sum of the current values of x and t in the signal
result. The two instances of the print model send the signal values to the output
file.

Note that the first print model is only executed once for each simulation. This
illustrates an important feature of MIDAS. Models only execute if one of their inputs
has changed. Since x only changes at the beginning of the simulations, the first print
model only executes on the first pass through the netlist.

1.4 The Late Output

While the previous example illustrates much of the power of MIDAS, it neglects an
important feature of the program; namely, the concept of the late output. We saw in
the previous example that MIDAS will make multiple passes through a list of models.
In that example, when the add model was executed, the output was immediately
placed in the signal result. In MIDAS, there is a special class of output pins called
late outputs for which this is not the case. When a model has a late output that has
changed, the change does not take effect until the beginning of the next simulation
pass. In this manner, delays can be simulated.

The late output is illustrated with a simple system whose block diagram is shown
in Figure 5. The output file from the simulation of this system, including the netlist
echo, is shown in Figure 6. You have already seen the models time and print in the
previous example. Here we introduce the delay model. This model copies the value
of its input t to its output delayed t. But the output of delay is a late output pin,
so the value change does not take effect until the next pass through the netlist. As is

MIDAS User Manual.......... ..., Simulating with MIDAS

B kokokokokoksok sk ok ok skok s ok sk ok sk ok s ok ok sk ok sk ok sk ok sk ok ks ok 3k ok sk ok ok ok sk sk ks ok sk ok sk ok ok ok ok s ok k ok s ok ok ok Kok K
MIDAS (TM)

Version 3.1

Copyright (C) 1989

The Board of Trustees of the Leland Stanford Junior University
All Rights Reserved

B okokokokokskok sk okok okok sk ok sk ok s ok s ok ok sk ok sk ok sk ok s ok ks ok koK s ok ok ok sk sk ke ok 3ok 3 ok ok ok k sk ok ok s ok 3 ok ok ok ok 3k
#

NETLIST

time (kstart<-1, kstop<-4, k->t);

delay (x1<-t, y->delayed_t);

print (x1<-"t:", x2<-t, x3<-", delayed_t:", x4<-delayed_t,

x5<-"\n") ;

END

#

t: 1, delayed_t: 0

t: 2, delayed_t: 1

t: 3, delayed_t: 2

t: 4, delayed_t: 3

Figure 6: An illustration of the late output.

apparent in the output from the print model, this has the effect of a one clock cycle
delay.

1.5 Simulation Algorithm

Having seen the basics of MIDAS’s operation, we are now ready to discuss the simu-
lation algorithm in detail. Before an experiment begins, MIDAS reorders the models
so that they can be executed in order. Then, MIDAS finds all of the invariant models
and puts them in a separate list. These initial steps are called the parsing phase of
MIDAS’s operation.

After the parsing is complete, MIDAS begins its simulation algorithm. This algo-
rithm is summarized in Figure 7.

Before discussing the algorithm itself, however, a brief digression into model op-
eration is warranted. Each model has up to three operations or functions that it can
perform. These three functions are Initialize, Execute, and LastExecute.

Simulating with MIDASo ... MIDAS User Manual

For each combination of control signals:

For each invariant model:
Call the Initialize function.
Call the Execute function.
For each model in the netlist:
Call the Initialize function.
Loop (until the simulation is done):
Update the late outputs.
For each model in the netlist:
If an input pin has changed, call the Execute function.
For each model in the netlist:
Call the LastExecute function.

Repeat until control signals are exhausted.

Figure 7: The MIDAS simulation algorithm.

The Initialize function is used to initialize the model’s internal state. The
Execute function is the essence of most models. This is where most operations
on signals are performed and where most outputs are generated. The LastExecute
function provides the mechanism through which models perform operations at the end
of a simulation. In most models, this function just calls the Execute function one last
time if one of the model’s input signals has changed. Models for which LastExecute
is more complicated include most of the analysis models, where information about
the system is accumulated over the course of the simulation and analyzed at the end
of the simulation. (See, for example, the description of the pdf model at the end of
this manual.)

We now return to the algorithm in Figure 7. For each combination of control
variables, a simulation is performed. Each simulation proceeds as follows. First, all
of the invariant models are initialized and executed. Next, all of the remaining models
are initialized. Then, the main simulation loop is entered. MIDAS remains in this
loop as long as specified by some time base type of function (such as time).

As stated in the description of the late outputs, their value changes do not take
effect until the beginning of the next simulation pass. Thus, the first operation in the
simulation loop is the updating of the late outputs. Note that when the simulation
loop is entered for the first time, this operation has the effect of initializing the late
outputs.

MIDAS User Manual.......... ..., Simulating with MIDAS

After the late outputs are updated, for each model in the netlist which has an input
pin that has changed since the last simulation pass, the model’s Execute function is
called. Note that when a control signal changes between simulations, it is considered
“changed” on the first simulation pass. Also, if all of the model’s input pins are
connected to constants (or unconnected), then the model’s Execute function will be
called on the first simulation pass of the first simulation in the experiment.

Finally, when the main simulation loop is exited, the LastExecute function is ex-
ecuted for each of the non-invariant models. This is where most analysis functions are
performed. As noted earlier, in many models, the LastExecute function simply calls
the Execute function if any of the model’s inputs have changed. However, because of
the way in which the time base models time and hexin are defined, the LastExecute
loop is very different from a normal simulation loop. In the LastExecute loop, the
outputs of the time base models do not change, so there is no clock. Furthermore, the
late outputs are not updated. Thus, the only signals which normally change in the
LastExecute loop are the outputs of the analysis models and any outputs of models
which are connected to the analysis outputs.

1.6 Summary

In this section, we have presented the basic operation of MIDAS. The following sec-
tions contain the details of the input file syntax, some examples, and the procedures
for writing user-defined models. The appendices contain installation information, the
error messages of MIDAS, and descriptions of all of the standard models supplied
with MIDAS.

Input File Format MIDAS User Manual

2 Input File Format

The system, its stimuli, and the desired analyses are specified in the input file. The
input file has the following basic structure

CONST

constant definitions
CONTROL

control ranges
NETLIST

model statements
END

The formats for the constant definitions, control ranges, and model statements are
given below. The three sections must appear in the order indicated. The CONST and
CONTROL sections are optional; the NETLIST section is required.

In an input file, white space (blanks, tabs, and newlines) is usually ignored, but
sometimes serves as a separator between names. Thus extra white space never hurts,
and the lack of white space rarely causes trouble.

Comments are allowed in input files. Comments are enclosed between (# and #),
and may be nested. An alternate form for comments begins with an # symbol and
continues to the end of the line. (This is the only instance in which a newline is not
simply treated as a space.)

Also allowed anywhere in the input file are file include statements, which have the
following format

INCLUDE <filename>;

MIDAS will read the contents of the file filename as if they were part of the input
file. When the include file has been completely read, MIDAS will return to reading
the input file. The include file can contain its own include statements. Up to ten
levels of include files can be nested. filename may include a tilde character, ~, as a
shorthand to denote the home directory of a user.

As discussed in Section 1, one of the important entities in the input file is the
signal. Signals can appear in all three sections of the input file. Thus, there are three
basic types of signals — constants, control signals, and net signals. The signal type is
determined by the section in which the signal first appears. Each signal has a value,
and there are seven different types of values — double, integer, complex, vector, matrix,

10

MIDAS User Manual......... o it iiiaa.. Input File Format

string, and stream. A double type is a double precision real number. Integers are
of the type long, the largest integer allowed by the computer. Integers are typically
generated and used by models that are used in simulating digital systems. Only net
signals may be integers. A complex type is a complex number represented by real
and imaginary parts, each of which are double precision real numbers. A vector type
is a one dimensional array of double precision real numbers. A matrix type is a two
dimensional array of double precision real numbers. A string type is a sequence of
characters. Finally, a stream type is an 1/O specifier, such as a file or a terminal.
The signal value type is determined where the signal is defined.

2.1 The CONST Section

The CONST section of the input file consists of constant definitions, which have the
following format

constaniname = constant expression ;

The constantname defines the constant’s name, and can be any sequence of letters
and digits that begins with a letter. The underscore character “_”
letter by MIDAS. Upper and lower case letters are distinct.

is treated as a

A constant expression can be either a number, a vector, a string, a scalar expres-
sion, a data file or a previously defined constant. Numbers are entered in the obvious
manner. Exponential notation (e.g., 1.0e-5) is supported. Vectors are delimited by
“[” and “]”. Each vector element can be either a number or a scalar expression. Vec-
tor elements are separated by commas. Strings are delimited by quotation marks ().
All of the standard C escape sequences are recognized. Scalar expressions are any
combinations of numbers, previously defined constants, and the four basic algebraic
operators, +, -, *, and /. Parentheses can be used to group expressions.

A data file constant is somewhat special in that when it is defined, the data file
is opened. There are two formats for a data file constant. They are

<filename ,type_of_io>
<filename>

The filename is any legal filename, and the type_of_io is one of: read, write, append,
r+, w+, or a+. If type_of_io is omitted, the default is read. The “+” modes are not
normally used, but they are needed for some models which perform more advanced
file manipulation. The non-“+” modes can be abbreviated with their first letter.

11

Input File Format MIDAS User Manual

Some examples of valid constant definitions are

cl = 0.5;

bruce = -1234;

a_vector = [1, cl1, 3, 2%2, 2+3]1;
aString="Hello MIDAS\n";

c2 = (-4+7)/3.1;

file = <mydata>;

ofile = <calcs.dat, w>;

Integer, complex, and matrix constants are not implemented. However, these and
other data types may be stored in files and read in with the appropriate models.

2.2 The CONTROL Section

The CONTROL section of the input file consists of control ranges that define the control
signals. Control signals have some of the properties of both constants and net signals.
For a given simulation, the control signals act as constants. But, unlike constants,
control signals step through a range of values, and a new simulation is run for each
combination of control values. In the first simulation pass of each simulation, control
signals act as if they were net signals whose value has changed. Thus, any model with
input pins connected to a control signal will execute during the first simulation pass
of a simulation.
Control ranges have the following possible formats

FOR controlname = start TO stop STEPS no_of_steps;
start TO stop LOG STEPS no_of_steps;
FOR controlname = vector literal;

FOR controlname

The formats of the controlname and vector literal are the same as the constant name
and vector formats in the CONST section. Start, stop, and no_of_steps are all constant
expressions. The control variable will step through the range from start to stop,
dividing that range into no_of_steps values of step size

stop — start

no_of _steps — 1

If the LOG form is used, the range will be divided logarithmically. In the vector form,
the control variable will step through each element of the vector.

MIDAS imposes no limit on the number of control variables which can be defined
in an input file. A complete simulation of the NETLIST will be done for every possible

12

MIDAS User Manual......... o it iiiaa.. Input File Format

combination of control variables. This is done by treating the FOR statements as being
nested, with the last FOR statement varying the fastest.

2.3 The NETLIST Section

The NETLIST section is the heart of the input file. It defines the simulation which is
to be carried out. This section contains a series of model statements which connect
signals and models together. The syntax for a model statement is

model (pin connections) ;

The model is the name of any standard or user defined model. The pin connections
are made up of any number of pin connections separated by commas. FEach pin
connection has the form

pinname connector signalname

The possible pinnames for the standard models are given in the model descriptions
(see Appendix D). The connector can be => or <-. The signalname has the same
format as a constant name in the CONST section, and is the name of the signal to
which the model is being connected. Note that signal names are stored separately
from the pin and model names, so signal names which are the same as model or pin
names are legal and will not confuse MIDAS. The pin connections can appear in
any order within the model statement. Furthermore, all of the pin names that are
defined for a model do not need to be connected to a signal. Unconnected inputs and
parameters will be connected to a default constant defined in the model. Values of the
default constants are given in the model descriptions (see Appendix D). Unconnected
outputs and late outputs will be connected to dummy signals.

There are four types of model pins — input, parameter, output, and late output
pins. Input and parameter pins are connected with the connector <-. Input pins can
be connected to any type of signal or constant expression. Parameter pins can be
connected to any invariant signal or constant expression. OQutput and late-output pins
can only be connected to a net signal using the connector ->. Signals that have not
appeared in the CONST or CONTROL sections are defined to be net signals. Net signals
must be driven by exactly one output or late-output pin. However, any number of
inputs and parameters can be connected to a signal.

Model statements may appear in any order. MIDAS will rearrange them so they
can be executed in order. For each pass through the NETLIST, MIDAS will only
execute the model statements for which a signal connected to an input pin has changed
value.

13

Input File Format MIDAS User Manual

o1 c1 o2 |
T
AID
¢>2)) ! ot £I/
vy
D/A

Figure 8: A first-order ¥A modulator.

2.4 Example: A First-Order YA Modulator

This section shows how to generate a MIDAS description for an implementation of
a first-order YA modulator. An understanding of switched-capacitor circuits at the
level of [1] is assumed. Figure 8 shows the simplified circuit diagram of a first-order
YA modulator [2]. The circuit is composed of an operational amplifier, switches,
capacitors, a 1-bit comparator, and a 1-bit DAC. The amplifier, switches, and capac-
itors constitute a switched-capacitor integrator. Denoting clock phase ®1 with index
n and clock phase ®2 with index n —{—% we can write the following difference equation
for the integrator

Ch 1

c Vel = Vil + 5)

Vi +1] = Viln] + ;

Since the quantizer is clocked on @1 and holds its previous value during ®2, V, [n—l—%] =
Vy[n]. Therefore, the integrator difference equation can be rewritten as

um+ﬂ:%M+§gmm—WMD

The integration function is performed by embedding a delay element in a feedback
loop. The 1-bit A/D converter (comparator) produces a digital 1 if the analog input
is greater than or equal to 0 and a digital 0 if the analog input is less than 0. Further-
more, since the output of the 1-bit D/A converter simply maps the digital output of
the 1-bit A/D converter to analog voltages, the information content of these signals is
identical. It is convenient to combine the A/D and D/A blocks into a single quantizer
block and perform signal analysis on the analog output of the quantizer.

14

| Integrator 1 | | Integrator 2 | | Quantizer |

| | | | | |

X + ql b+ ut |+ q2 I+ u2 ! l l
—»@—n—»@ ' ;@—0—»@—» Delay ' — A/D I
| | | | | |

- [+|v1 [- [+T o [

| Delay |« | | | | |

| | | | | |

L — — — — — — — — — — — 4 L — — — — — — — — — — — — J | |

y | |

: D/A [

| |

Figure 9: Block diagram of a second-order ¥A modulator.

Assuming a capacitor ratio of 1/2, we can now describe the above system with
the following netlist fragment

(# first-order sigma-delta modulator #)

sub (x1<-x, x2<-y, y->nil); (# subtract feedback from input #)
mul (x1<-ni1, x2<-0.5, y->n2); (# integrator gain #)

add (x1<-n2, x2<-s, y->n3); (# integrator described in 2 lines #)
delay (x1<-n3, y->s);

quant (x<-s, y—>y); (# quantizer #)

Note that the output of the quant model is :I:% by default. The above netlist

fragment can be made shorter and the MIDAS execution time can be reduced by
taking advantage of some additional features of the delay model

(# first-order sigma-delta modulator #)

sub (x1<-x, x2<-y, y->n); (# subtract feedback from input #)
delay (x1<-n, x2<-s, y->s,

c1<-0.5); (# integrator with gain of 0.5 #)
quant (x<-s, y->y); (# quantizer #)

The reader is encouraged to confirm that these two netlist fragments do, in fact,
implement the same system. The next sections provide more elaborate examples.

2.5 Example: A Second-Order XA Modulator

Figure 9 shows the block diagram of the core of an A/D converter, a second-order
YA modulator [3], [4]. The input file is given in Figure 10. In the following discussion,
the terminology introduced in Section 1.1 will be used.

The CONST section of the input file declares a number of important constants.
A sampling frequency of 1 MHz and a test signal frequency of 109 Hz are defined
here. The signal frequency is relatively low so that the harmonics of the signal fall

15

Input File Format MIDAS User Manual

in-band and are not removed by the decimation filter. The 0-dB reference level of the
input source is set equal to 0.5 with amplitude, which is also equal to the magnitude
of the feedback reference voltages of the quantizer. Therefore, a 0-dB input signal
corresponds to the maximum theoretical input level of the modulator before severe
clipping takes place. Modulators typically experience overload a few dB below this
level. The cycles constant is used to set the duration of each simulation in the
experiment to 6 cycles of the input signal. Finally, h48 is a vector that contains half
of the coefficients of a symmetric, linear phase, FIR filter used in the decimation of
the modulator output.

The CONTROL section determines that the experiment will be carried out for all
combinations of two signals, each of which can take on one of four values. The M
signal controls the oversampling ratio, or, equivalently, the decimation ratio, and the
gain signal controls the input amplitude. Thus, there will be 16 distinct simulations
in the experiment.

The NETLIST section begins with a signal source created by the time and sin
models. The time increments are equal to the sampling period and the stop time
is selected to accomodate 6 cycles of the input signal. Note that since cycles, fx,
and fs are constants, they can be used in arithmetic expressions and do not require
explicit divide models to set the parameters of time. The amplitude of the sinewave
is set through the A and gain pins of the sin model.

The next few lines describe the second-order modulator. It should be verified by
the reader that this description is an accurate representation of the block diagram
shown in Figure 9. Next, the output of the modulator is decimated by a factor of
M/2 in a comb filter and a factor of 2 in an FIR filter. Since M is not a constant, an
explicit div model is need to divide it by 2. However, since M is an invariant signal,
this computation is performed only once per simulation. Therefore, there is little
performance penalty due to the use of the div model.

The output of the decimation filter is analysed by the disto model. This model
implements an LMS algorithm that computes various properties of the input sequence,
including the signal-to-noise ratio and the mean squared error. For more information
about this and other models, see Appendix D. Finally, the results of the simulations
are printed to stdout using the print model. Note that in the first call to print,
whenever either of its input signals change, all inputs are printed. In the second
call to print, since the trigger pin is used, the inputs are printed only when mse
changes. This insures that the output is generated only after the disto model has
completed its operation and not when a control signal changes.

16

MIDAS User Manual......... o it iiiaa.. Input File Format

The output of this experiment shows the relationship between oversampling ratio,
signal-to-quantization noise, and mean squared error as the input signal power is
varied.

2.6 Example: A Second-Order YA Digital Noise Shaper

The MIDAS input file for a linear interpolator and digital noise shaper is given in
Figure 11. This system implements the core of a YA D/A converter. Detailed
information about this architecture can be found in [5].

The CONST section declares a Nyquist sampling frequency of 44.1 kHz and an
oversampling ratio of 176. The test signal frequency is 3.1 kHz. The cycles constant
is used to set the duration of each simulation in the experiment to 10 cycles of the
input signal. bits specifies the resolution of the signal source as well as some of the
arithmetic blocks in the netlist. harm is the number of harmonics of the input signal
to search for in the noise shaper output. Finally, the INCLUDE statement inserts a file
that defines a vector, h48, containing the coefficients of a reconstruction filter. The
filter may be identical to that used in the FIR decimator of Section 2.5.

The 0-dB reference level of the input source is set equal to 32768 with amp. This
number is equal to 2'® and represents the peak amplitude of a 16-bit digital sinusoid.
It is also equal to the magnitude of the feedback reference values of the quantizer.
The CONTROL section steps up the amplitude of the input source in 1-dB increments
from -95 dB to 0 dB for each simulation. Thus, the experiment described by this
input file consists of 96 simulations.

The NETLIST section begins with a signal source created by the time and sinNzoh
models. The time increments are equal to the sampling period and the stop time is
selected to accomodate 10 cycles of the input signal. The amplitude of the sinewave
is set through the A and gain pins. The output of the sinNzoh model is samples of
a sinewave with 15 zeros inserted between them. Note that for low values of gain,
an amplitude of less than 1 LSB may be specified. In this situation, the output of
sinNzoh is rounded up and oscillates with an amplitude of 1 LSB. In this experiment,
when gain drops below —90-dB, the output of the source remains unchanged.

The zero-order held input signal is fed to a linear interpolator to generate the
intermediate values. A detailed description of this circuit can be found in [6]. The
next set of commands define the second-order noise shaper. Next, the output of the
noise shaper is decimated by a factor of M/2 in a comb filter and a factor of 2 in an
FIR filter. The output of the decimation filter is analysed by the disto model.

Finally, the results of the simulations are printed to stdout using the print model.
In the second call to print, since the trigger pin is used, the inputs are printed only

17

Input File Format MIDAS User Manual

CONST
fs = 1.0e6; (# sampling rate #)
fx = 109; (# input signal frequency #)
amplitude = 0.5; (# 0-dB amplitude #)
cycles = 6; (# cycles of fx in simulation #)

h48 = [-3.953e-3, -5.929e-3, 5.929e-3, 3.953e-3, -5.929e-3,
-7.905e-3, 7.905e-3, 9.88le-3, -1.186e-2, —1.383e-2,
1.383e-2, 1.779e-3, -1.976e-2, -2.372e-2, 2.569e-2,
3.162e-2, -3.557e-2, —4.545e-2, 4.941e-2, 7.115e-2,
-7.510e-2, —-1.324e-1, 1.403e-1, b5.040e-1 1;
(# coefficients of decimation filter #)
CONTROL

FOR M = [512, 256, 128, 64];
FOR gain = [-20, -5, -2, 0];

NETLIST
(# source #)
time (k—>kT, kstop<-(cycles/fx), kstep<-(1/fs));

sin (t<-kT, y->x, f<-fx, A<-amplitude, gain<-gain);

(# second-order sigma-delta modulator #)

sub (x1<-x, x2<-y, y—>qi); (# first summing node #)
add (xi<-q1, x2<-vi, y->ul); (# first integrator #)
delay (x1<-ul, y->vi1);

sub (xi1<-ul, x2<-y, y->q2); (# second summing node #)
delay (x1<-q2, x2<-u2, y->u2); (# second integrator #)
quant (x<-u2, y->y); (# quantizer #)

(# decimation filter #)

div (x1<-M, x2<-2, y->M_2);

sinec3 (x<-y, y->y1, M<-M_2);

linfir (x<-y1, y->Y, h<-h48, M<-2);

(# analysis and output #)

div (x1<-fs, x2<-M, y->fn);

div (x1<-fx, x2<-fn, y->fx_fn);

disto (x<-Y, £xT<-fx_fn, snr->snr, mse->mse);

print (x1<-"\nfn: ", x2<-fn, x3<-", M: ", x4<-M, x5<-"\n",
format<-".5g");

print (x1<-gain, x2<-snr, x3<-mse, x4<-"\n", trigger<-mse);

END

Figure 10: Input file for a second-order modulator.

18

MIDAS User Manual......... o it iiiaa.. Input File Format

when sndr changes. This insures that the output is generated only after the disto
model has completed its operation and not when gain changes. The output of this
experiment plots the signal-to-quantization noise plus distortion ratio of the system
as the input amplitude is swept.

2.7 Example: Simulating Capacitor Voltage Coefficients

As an illustration of simulating circuit nonidealities, this section examines the mod-
elling of capacitor voltage coefficients in a XA modulator. The impact of this nonlin-
earity on the performance of a modulator varies considerably with the specific circuit
implementation. The following discussion focusses only on the first integrator and
assumes the integrator topology shown in Figure 8. In this Figure, (' is the sampling
capacitor and (5 is the integration capacitor.

Assume the capacitors can be described by

C(V) = Co . (1 + qu + O.’QV2)

(o 1s the nominal capacitance, oy is the capacitor linear voltage coefficient, and «ay
is the capacitor quadratic voltage coefficient. It can be shown that the integrator
difference equation is

Voutln + 1] = Vigear + Vaisier + Vaisioa

The output voltage is equal to the ideal output plus an error due to the sampling
capacitor voltage coefficient and an error due to the integration capacitor voltage
coefficient. The ideal output is

C
‘/ideal = ‘/out[n] + C—Ol(‘/l’[n] - Vy[n])
02

Co1 and Cpy are the nominal capacitances of the sampling and integration capacitors,
respectively. The error due to the sampling capacitor is

C
Viisier = (G (V2[n) = Vi lnl) + 51 (V2] = Vo [n))
Coz 2 3
And, the error due to the feedback capacitor is
Viisics = 5 Vot I+ 1] = Vot [n]) + 52 (Vo[+ 1] = Vs [n])

Note that the error due to the feedback capacitor makes the integrator difference
equation a cubic polynomial in V,,;[n + 1]. To simulate an integrator in MIDAS with

19

Input File Format MIDAS User Manual

CONST
fn = 44.1e3; (# Nyquist rate = 44.1 kHz #)
M = 176; (# total oversampling ratio, M = 11%16 #)
fs = fnxM; (# sampling rate #)
fx = 3.1e3; (# input signal frequency #)
Mzoh = 16; (# zero-order hold samples #)
cycles = 10; (# cycles of input sine in simulation #)
bits = 16; (# number of bits in input signal #)
harm = 5; (# number harmonics to test for in disto #)
amp = 32768; (# amplitude of input signal #)

INCLUDE <filter2.i>; (# filter coefficients #)

CONTROL
FOR gain = -95 TO O STEPS 96;

NETLIST
(# source: a 176x oversampled input that has a 16x zero-order hold #)
time (k->kT, kstop<-(cycles/fx), kstep<-(1/fs));
sinNzoh (t<-kT, y->zoh, A<-amp, gain<-gain, f<-fx, n<-bits, M<-Mzoh);

(# Linear interpolation #)

subintN (x1<-zoh, x2<-itpl, n<-bits, y->diff, clip<-1);

delayint (x<-diff, y->diffd);

decimateint (x<-diffd, M<-Mzoh, y->diffdecim);

addintN (x1<-diffdecim, x2<-itpld, n<-(bits+4), y->itpldiv, clip<-1);
delayint (x<-itpldiv, y—>itpld);

double2int (x<-bits, y->bitsint);

divintN (x1<-itpldiv, x2<-bitsint, n<-bits, y—>itpl, clip<-1);

(# 2nd order sigma-delta #)

subintN (x1<-itpl, x2<-y, y->s1, n<-(bits+1), clip<-1); (#1st summer#)
addintN (x1<-s1, x2<-d1, y->did, n<-(bits+2), clip<-1);

delayint (x<-did, y->di);

subintN (x1<-d2, x2<-y2, y->s2, n<-(bits+2), clip<-1); (#2nd summer#)
addintN (x1<-d1, x2<-s2, y->d2d, n<-(bits+3), clip<-1);

delayint (x<-d2d, y->d2);

quantint (x<-d2, y—>y, yp<-amp, ym<-(-amp));

mulint (x1<-y, x2<-2, y->y2);

(# filtering, analysis and output #)
sinc3int (x<-y, y->ysinc, M<-M/2);
linfir (x<-ysinc, y->Y, h<-h64, M<-2, skip<-70);
disto (x<-Y, fxT<-(fx*M)/fs, harmonics<-harm, tsnr->sndr);
print (x1<-"\"DAC SNDR\n");
print (x1<-gain, x2<-sndr, x3<-"\n", trigger<-sndr);
END

Figure 11: Input file for a second-order digital noise shaper.

20

MIDAS User Manual......... o it iiiaa.. Input File Format

nonlinear sampling capacitors, mul, add, and sub models can be used. To facilitate
this operation, the distortDiff model may also be used. Simulating the error due
to the feedback capacitor is more involved because a root of a third-order polynomial
must be found. The distortIter model solves the cubic by an iterative method. The
model works well as long as the voltage coefficients are small. In a ¥A modulator,
the error due to the feedback capacitors is greatly attenduated in the baseband by
noiseshaping. Therefore, this term is often omitted to speed up simulations.

The netlist of Figure 12 simulates a second-order modulator whose first integrator
has distortion due to capacitor voltage coefficients. The capacitor technology is as-
sumed to provide a linear voltage coefficient of 2000 ppm/V and a quadratic voltage
coefficient of 600 ppm /V?2. Since it is assumed that the actual implementation will use
fully differential circuits the simulation uses a linear voltage coefficient of 40 ppm/V
to account for the attenuation of even order nonlinearities. The simulation is carried
out for 200 cycles of a —4-dB input signal. The modulator output is then decimated
and windowed by a window with very low sidelobes. The fft model estimates the
spectrum of the output, which is illustrated in Figure 13.

21

Input File Format MIDAS User Manual

CONST
fs = 6.4e6; (# sampling rate = 6.4 MHz #)
M = 128; (# oversampling ratio = 128 #)
fn = fs/M; (# Nyquist rate = 50 kHz #)
fx = 6013; (# input signal frequency #)
gain = -4; (# gain of input signal #)
cycles = 200; (# cycles of input sine in simulation #)
delta = 2.0; (# quantizer feedback level: +/- 2.0 #)
harm = 7; (# number harmonics to find in disto #)
intgain = 0.5; (# integrator gains #)
al = 40e-6; (# linear voltage coefficient #)
a2 = 600e-6; (# quadratic voltage coefficient #)
INCLUDE <filter2.i>; (# filter coefficients #)

NETLIST

(# source #)
time (k—>kT, kstop<-(cycles/fx), kstep<-(1/fs));
sin (t<-kT, y->x, f<-fx, gain<-gain, A<-delta);

(# second-order modulator #)

(# distort the input due to sampling caps #)

sub (x1<-x, x2<-y, y—>x_y);

distortDiff (x1<-x, x2<-y, alphal<-al/2, a2<-a2/3, y->x_y_dist);
add4 (x1<-x_y, x2<-x_y_dist, y->id, al<-intgain, a2<-intgain);

(# estimate the distortion due to feedback caps and integrate #)
distortIter (xin<-id, xfb<-di, alphai<-al/2, alpha2<-a2/3, y->did);
pureDelay (x1<-did, y->di);

(# second integrator #)
add4 (xi1<-d1, =x2<-y, y—>s2,

al<-intgain, a2<-(-intgain)); (# second summing node #)
delay (x1<-s2, x2<-d2, y->d2); (# second integrator #)
quant (x<-d2, y->y, yp<-delta, ym<-(-delta)); (# quantizer #)

(# decimation filter #)
sinc4 (x<-y, y->ysinc, M<-M/2);
linfir (x<-ysinc, y->Y, h<-h64, M<-2, skip<-70);

(# analysis and output #)
Nuttall30 (x<-Y, w—>windowed, reference<-delta);
fft (x<-windowed, fs<-fn, S->S);
disto (x<-y, fxT<-(fx/fs), harmonics<-harm, tsnr->tsnr);
print (x1<-"\n\"Non-lin caps\n");
print (x1<-S);
END

Figure 12: Input file for a modulator with capacitor voltage coefficients.

22

MIDAS User Manual......... o it iiiaa.. Input File Format

Spectral Power (dB)

-120 |

-160

200 bt i
0 5 10 15 20 25

Frequency (kHz)

Figure 13: Baseband spectrum of modulator with nonlinear capacitors.

23

User Defined Models. MIDAS User Manual

3 User Defined Models

This section describes how to add user-defined models to MIDAS. Models are used
to add greater functionality to MIDAS. A model can define a new arithmetic block,
additional file I/O, new data analysis procedures, Since MIDAS has no structure
which can be used to combine models into a subcircuit, a new model can be defined to
replace common combinations of other models. Models can also be written to access
other programs.

To create a new MIDAS model, the model code must be written in the format
described below. Next, MIDAS must be recompiled to incorporate the new model
into the simulator. The compilation procedure is outlined in Section 3.5 and in
Appendix B. Substantial effort has gone to making this process as painless as possible.
While MIDAS is written in the language C++ [7], most models can be written with
only a rudimentary knowledge of the language C, a subset of C4+.

3.1 Model File Format

Model files, like input files, are simple text files. Model file names must have the
suffix “.m”. A model file has the following format

c-code

MODEL modelname
definitions

INITIALIZE
model-code

EXECUTE
model-code

LASTEXECUTE
model-code

END

c-code

The details of this format are described below. As in the input file, white spaces
(blanks, tabs, and newlines) serve as separators. They must be used to separate
alpha-numeric items from each other, but are otherwise optional.

24

MIDAS User Manual......... ..., User Defined Models

Comments are allowed throughout the model file. As in input files, comments are
enclosed between (# and #) and may be nested. However, the single line form of
comments allowed in input files is not legal in a model file.!

The c¢-code that appears at the beginning and end of a model file can be any series
of C++ statements, with the following restrictions. No variable or pin defined in the
MODEL section can be used and C++4 style comments (both the /* x/ and // forms)
are strongly discouraged. While these comments are, strictly speaking, legal, and
most of the time will not cause any trouble, they have the potential to confuse the
model file processor in ways which may be difficult to decipher.

The modelname is the identifier you will use to refer to this model in your input
files. It can be any legal identifier, i.e., a sequence of letters and digits beginning with
a letter, with the sole restriction being that all model names must be distinct. This
restriction includes the names of the standard models, since once MIDAS is compiled,
it cannot differentiate between user defined and standard models.

The definitions can be either ordinary C+4+ variable definitions, or model pin
definitions. The ordinary C++ definitions define variables which are internal to the
model and can be accessed from any of the model-code sections. Model pin definitions
create a model pin and associate a pin type and a value type with that pin. They
have the following format

value-type pin-type pinnames;

The wvalue-type defines the signal value type to which the pin must be connected.
As mentioned earlier, the possible signal value types are double, integer, complex,
vector, matrix, string, and stream. The pin-type describes how the signal is to be
used. The pin types are input, parameter, output, and lateoutput. The pinnames
are comma separated pin names. Pins whose value type is double or integer can
optionally be initialized. The format for an initialized pin name is

pinname = constant

where a constant is any real number, integer, or C++ constant defined in the c-code
at the beginning of the model file.

The model-code can contain any C++ statement that could appear inside a C++
function definition, i.e., anything except for additional function definitions. The op-
erations a model will perform on the signals connected to it are defined in the model-
code. By treating the model pins as if they were ordinary C++ variables, the model
writer can take the value of a model pin or assign a value to a model pin, with

!The elimination of the single line form of comment was needed in order that C++ preprocessor
directives such as “#include” not be treated as comments.

25

User Defined Models. MIDAS User Manual

the exception being that input and parameter pins cannot have values assigned to
them.? When the model is actually executed by MIDAS, instances of the model pins
in the model definition will be replaced by the signals connected to those pins. Also
available in the model-code are some special purpose functions which are described in
Sections 3.3 and 3.4.

The INITIALIZE, EXECUTE, and LASTEXECUTE sections are converted by the model
file compiler into C++ functions that are executed by MIDAS at various times.
INITIALIZE is executed once at the beginning of each simulation, which is once for
each combination of control variables. It is executed before any of the other sections.
Because of this, the only pins whose value has any meaning in an initialize section are
the parameter pins. Their value is valid because they are required to be connected
to invariant signals. The INITIALIZE section is optional. EXECUTE is executed once
every simulation pass (except for the last simulation pass), but only if one of the
signals connected to the model’s input pins has changed value. The EXECUTE section
is mandatory. LASTEXECUTE is executed on the last simulation pass, and is useful in
models which perform analyses on the simulation as a whole. This section is optional.
If it is omitted, MIDAS will use a default function which executes the code in the
EXECUTE section one last time if any of the signals connected to the model’s input pins
has changed value. However, as noted in Section 1.5, the only signals that normally
change during the LastExecute loop are those connected to the outputs of analysis
models.

An exception to the above execution rules occurs when the inputs to an algebraic
model are all invariant, making the model invariant. (Invariant models were described
in Section 1.) These models will have their INITIALIZE and EXECUTE sections exe-
cuted at the beginning of each simulation before any of the non-invariant models are
initialized. This has the effect of initializing all of the invariant signals.

The characteristics which make a model algebraic can now be made explicit. A
model is algebraic unless (1) one of its pins is a late output, or (2) the model function
Enable (see Section 3.4) is used in any of the model-code sections, or (3) there is a
LASTEXECUTE section in the model file. When a model file is compiled, the model file
translator will determine whether or not a model is algebraic.

2To clarify what is meant by “assign”, consider the following statement.
y=x

Because it contains an equal sign, the statement is called an assignment statement. The value of x
is “assigned to” y, which means that the value stored in y is set equal to the value stored in x. If x
is a model pin, the value taken will actually be the value of the signal connected to pin x. If y is a
model pin, the value of x will actually be assigned to the signal connected to pin y.

26

MIDAS User Manual......... ..., User Defined Models

(# File: sin.m #)
#include <math.h>
MODEL sin
double input t;
double output y;

double parameter A = 1.0, gain = 0.0, £ = 1.0;
double a, omega;

INITIALIZE
a =A x pow(10.0, gain/20.0);
omega = 2.0 * M_PI * f;
EXECUTE

y = a * sin(omega * t);
END

Figure 14: Sample MIDAS model file - the sin model.

3.2 A Sample Model

To illustrate the model file format, the model file for the model sin is shown in Fig-
ure 14. This model produces an output y which is the sine of the input t. Three
parameters, A, gain and f, determine the amplitude and frequency. For more infor-
mation on the sin model, see the model description at the end of this manual.

3.3 Pin Functions

As alluded to previously, there are several special purpose pin functions. These func-
tions are used to obtain information about a pin and the signal connected to the pin.
The syntax for these functions is

functionname (pinname)

27

User Defined Models. MIDAS User Manual

where the functionname is the name of a pin function, and the pinname is the name
of the model pin about which information is requested. The pin functions currently
defined and the values they return are

IsActive — Returns true if the pin is connected to a signal.

IsChangeable - Returns true if the pin is connected to either a control
signal or a net signal.

IsConstant — Returns true if the pin is connected to a constant.

IsControl — Returns true if the pin is connected to a control signal.

IsNet — Returns true if the pin is connected to a net signal.

IsTriggered — Returns true if the pin is connected to signal whose value
has changed in the last simulation pass.

Name — Returns a pointer to a string containing the name of the signal to
which the pin is connected.

Stype — Returns an integer that is equal to one of the constants
constanttp, controltp, nettp, or dummytp depending on whether
the signal connected to the pin is a constant, control signal, net
signal, or nothing.

See Figure 15 for an example model which uses some of these pin functions.

3.4 Model Functions

Similar to pin functions, there are several special purpose model functions. The
syntax for these functions is

functionname ()

where the functionname is the name of a model function. The model functions
currently defined are

ContinueSimulation — Tells MIDAS to make one more simulation pass.
The simulation ends when no model calls this function. It is used
mainly by models such as time.

Enable — Tells MIDAS to execute this model during the next simulation
pass whether or not any inputs have changed. It is used mainly by
models such as time to keep themselves going.

IsEnabled — Returns true if the model has had inputs which have
changed. Useful only in the LASTEXECUTE section.

IsFirstPass — Returns true if this is the very first time the model has
been initialized. Only valid in the INITIALIZE section.

28

MIDAS User Manual......... ..., User Defined Models

(# A strange sample model - It initializes a to -1 in the
first simulation of the experiment, and 1 otherwise.

During execution, this model sets its output y to a if
the input x1 has changed or 2*a if only input x2 has

changed.

#)

MODEL aSample
double input x1, x2;
double output y;
double a;
INITIALIZE
if (IsFirstPass()) a = -1; else a = 1;

EXECUTE

if (IsTriggered(x1)) y = 1;
else if (IsTriggered(x2)) y = 2;

END

Figure 15: MIDAS model file demonstrating pin and model functions.

For a sample model which uses some of these functions, see Figure 15.

3.5 Compiling the Model

Once the model file has been written, it must be compiled into MIDAS. This is done
in two steps. First, the model file must be placed in MIDAS’s midas3/src/user
directory, and must have the suffix “.m”. Next, from the midas3/src directory,
execute the command make models. This recompiles MIDAS with the new model. If
this is accomplished without error, the new model becomes available to netlists. See

Appendix B for more details.

29

User Defined Models. MIDAS User Manual

3.6 Performance Enhancement

MIDAS netlists are typically composed of many relatively primitive models, such as
add and delay, that together constitute a complex systems. This approach provides
a great deal of flexibility in a netlist to simulate a variety of different systems quickly
and easily.

There are times, however, when it is desirable to runs very long simulations on a
fixed architecture. For example, this may arise when evaluating the power of spectral
tones as a dc signal is swept in fine increments across the input range of a XA mod-
ulator. For such experiments, it is advantageous to write a single model to describe
a large portion of the system. With this approach, much of the overhead of calling
numerous models is avoided and the simulation can be speeded up considerably. For
an example of models that provide extended functionality, the reader is encouraged
to examine the sigmal and sigma2 models.

Furthermore, many compilers offer code optimization at the expense of a longer
compilation time. In some systems, significant performance advantages can be ob-
tained by using the compiler optimization functions. Consult your compiler manual
for more details regarding this option.

3.7 Some Warnings

The model file compiler is actually implemented as a translator from a model file to
a C++ file. That C++ file is then compiled into MIDAS. For this reason, most of
the errors in model files are caught by the C++ compiler. Since the error handling
capabilities of compilers vary, so will the error messages generated by erroneous model
files. Some C++ compilers will not catch an error as until several lines after it
occurred. When this occurs, the error will almost always be in the same section of
the model file as the line caught by the compiler.

Occasionally, errors may occur that are not the fault of the model writer. Since the
new model is being compiled into a larger program, sometimes errors like “function
redefined” occur. When this happens, it means that the model accidentally contains
a variable or function name used in the main program. The only solution is to rename
the offending function or variable name in the model file.

Also, while assigning to input and parameter pins is said to be illegal in Sec-
tion 3.1, there are circumstances in which this error will not be detected. The result
is unpredictable.

One important point and a possible source of confusion is accessing vectors and
matrices in models. When making an assignment to an element of a vector or matrix,
the element must be accessed by enclosing the variable name in parentheses when

30

MIDAS User Manual......... ..., User Defined Models

invoking the element. Thus, to access element 4 of vector vec, the following syntax
must be used

(vec) [4] = x;

Note that writing to an element of a vector or matrix does not trigger the models
connected to that output. This means that other models that use that pin will not
necessarity be tagged to be executed in the next simulation pass. This degree of
freedom is useful in some models. For example, in the Nuttall30 windowing model,
a vector is assigned to throughout a simulation. However, computations on this vector
should occur only at the end of the simulation. To explicitly trigger models connected
to the vector or matrix, it is necessary to make a dummy assignment of the variable
to itself as follows

vec = vecC;

One final word of caution should be mentioned regarding the assignment of integers
to doubles and vice versa. The model writer must take care that variable assignments
are carried out without type conflicts. This is not only true in MIDAS, but in all
C programs. In previous versions of MIDAS, since no integer data types existed, it
was unlikely that such problems would surface. In the new version of MIDAS, the
model writer must be particularly aware of this possibility. As an illustration of this
point, consider an integer variable, int_var, and a double variable, double var. The
following assignments yield unpredictable results

doublevar = int_var; (# this is wrong! #)
int_var = doublevar; (# this is wrong! #)

The correct form of the assignemt is to “typecast” the integer as a double when an
assignment is made to double var and to use the conversion utility function, dtol,
when an assignement is made to int_var.

double var = (double) (int_var); (# this is correct #)

int var = dtol(double_var); (# this is correct #)

31

Writing Advanced Models.............. ... MIDAS User Manual

4 Writing Advanced Models

While the vast majority of models can be written using the techniques of Section 3,
there are special cases which require that one bypass the model file translator and
create the C++ file directly. These special cases include having pin arrays (similar
to vectors in C+4) and having pins whose type is determined at run-time by the
signals to which the pins are connected. For a good example of these cases, the
interested reader should study the code for the print model, which can be found in
midas3/src/mcore/EL after reading this section.

In this section, we discuss the C++ file format. A working knowledge of C++
is assumed. For continuity, we use the C++ file that is generated by the model file
sin, which is the example model file shown in Figure 14. The C++ file generated
from this model file is reproduced in Figure 16.> The line numbers are supplied for
reference only and are not actually part of the program. Note that in the C++ file,
and everywhere else in the MIDAS source code, models are called “elements” for
historic reasons.

The sin model has an output y which is the sine of the input t. Three parameters,
A, gain, and £, determine the amplitude and frequency.

The purpose of lines 1 to 3 is to include the definitions of the underlying objects
that define models and signals. They must be present in every model’s C++ file.
Line 4 includes the definitions needed for the sin function used in this model. The
definition of the model sin is given in lines 6 to 16 in the form of an object declaration
for SinElement. The implementation of this object is shown in lines 18 to 43.

The model pins are defined in lines 7 to 9. The variable types allowed in a pin defi-
nition are InputSignal, ParameterSignal, OutputSignal, and LateOutputSignal,
corresponding to the pin types described in Section 3. They themselves are imple-
mented as classes in C+4 and declared in the header file Elements.h. Note that the
pin variables are actually defined as pointers to signals. This will be important later.
Line 10 defines internal model variables a and omega.

The operations on the object that defines the model sin are declared in lines 12
to 14. The code for the constructor, SinElement: : SinElement, is shown in lines 18
to 26. Its purpose is to initialize all the variables declared in the object SinElement.

3This is not entirely true. Like many code generating computer programs, the model file translator
generates some extraneous lines. The C++ file shown here is how the model file for sin should be
translated.

32

MIDAS User Manual........ Writing Advanced Models

O 0 ~N O o B W N =

DR OEB BRB W W W W W W W WWWNNNNDMNMNMNNDNDNNNRRERR B R RRRRR
NP WNR, O OWONOOOEE WNRL,OWOWOONONNOO PR WNRL,OOOONOO O WNR O

#include "def.h"
#include "BaseElement.h"
#include "Elements.h"
#include <math.h>

class SinElement : public BaseElement {
InputSignal *t;
OutputSignal *y;
ParameterSignal *A, *gain, *f;
double a, omega;

public:
SinElement (char*, ElementClass);
void Initialize();
void Execute();
BaseElement* Clone();

};

SinElement: :SinElement (char* elname, ElementClass alg)
BaseElement (elname, alg) {

_AddElement(this, elname);
t = AddInput(this, "t", doubletp, 0.0);

y = AddOutput(this, "y'", doubletp);

A = AddParameter(this, "A", doubletp, 1.0);

ga

£

in = AddParameter(this, "gain", doubletp, 0.0);
= AddParameter(this, "f", doubletp, 1.0);
}

void SinElement::Initialize() {
a = (A->Dbl()) * pow(10.0, (gain->Dbl())/20.0);
omega = 2.0 * M_PI * (£->Dbl());

}

void SinElement: :Execute() {
(*y) = a * sin(omega * (t->Dbl()));
}

void SinElement::LastExecute() {
if (IsEnabled()) Execute();
}

BaseElement* SinElement: :Clone() {
return new SinElement(Name(), algebraic);

}

SinElement Sin("sin", algebraic);

Figure 16: The C++ file for the model sin.

33

Writing Advanced Models.............. ... MIDAS User Manual

The function _AddElement is used at the beginning of the program to tell MIDAS that
the model exists. The arguments to _AddElement are always this and elname. The
other Add... functions are used when the net list is being processed to connect the
model pins to the net. The possible Add... functions are AddInput, AddParameter,
AddOutput, and AddLateOutput. There must be one such function for each pin. The
first argument to the Add. .. function is always this. The second argument is a string
which defines the pin name. By convention, this name is the same as the pin’s variable
name in the C++ file. All pin names for a particular model must be unique, but the
pin names of different models may be the same. The third (optional) argument is the
signal value type. Note that names for the signal value types used here are slightly
different from those used in the model files, so that conflicts with C++ are avoided.
The possible names are: doubletp, integertp, complextp, vectp, mattp, strtp,
and filetp. The default is doubletp. For input and parameter signals of type
doubletp, a default value can optionally be specified as a fourth argument.

The function Initialize is run once in the first pass of each simulation. In this
case, it initializes the values of a and omega.

The function Execute determines the actual function of the model, which in this
case is the computation of the sine of t. The value of a pin is returned by one of
the following functions: Db1(), Int(), Cpl(), Vec(), Mat(), Str(), and File(),
depending on its type. Since the inputs and parameters for this model are pins
of type doubletp, the appropriate function is Db1(). The construct t->Dbl(), for
example, returns the current value of signal connected to the pin t. The -> operator
is used because t is a pointer. The value of an output or late-output pin is set by a
simple assignment to that pin. The C++4 “overloading” mechanism is invoked on this
assignment to let MIDAS know that this particular signal has changed. The MIDAS
scheduler will then execute all models with inputs connected to this signal during the
current or the next sampling period, depending on whether the pin is an output or a
late-output.

While it is not used in the sin example, the function LastExecute may also
be defined. It is executed at the end of each simulation. The Initialize and
LastExecute functions are optional; the Execute function is not.

The Clone function (lines 15 and 41 to 43) is used by MIDAS to create instanti-
ations of the model for each occurrence in the input deck. Line 45 makes the model
known to the simulator and gives it a name. Each model must be given a unique
name; a run-time error occurs otherwise. The “algebraic” which appears in lines 42
and 45 defines the model to be algebraic. If the model is nonalgebraic, these instances
of algebraic should be replaced by nonalgebraic. Models which must not be al-
gebraic are those which have a late output pin, those which trigger themselves with

34

MIDAS User Manual........ Writing Advanced Models

the Enable function, and those which contain a LastExecute section. However, no
check is made to insure that these rules are followed.

35

REFERENCES ... i MIDAS User Manual

References

1]

[6]

7]

8]

36

R. Gregorian and G. Temes, Analog MOS Integrated Circuits for Signal Process-
ing, Wiley, New York, 1986.

J. Candy and G. Temes, Oversampling Methods for A/D and D/A Conversion,
IEEE Press, New York, 1992.

J. Candy, “A use of double integration in sigma delta modulation,” IEFKE Trans.
Commaun., vol. COM-33, pp. 249-258, March 1985.

B. Boser and B. Wooley, “The design of sigma-delta modulation analog-to-digital
converters,” [FEEE J. Solid-State Circuits, vol. SC-23, pp. 1298-1308, December
1988.

D. Su and B. Wooley, “A CMOS oversampling D/A converter with a current-
mode semidigital reconstruction filter,” IEEFE J. Solid-State Circuits, vol. SC-28,
pp. 1224-1233, December 1993.

J. Candy B. Wooley and O. Benjamin, “A voiceband codec with digital filtering,”
IEEFE Trans. Commun., vol. COM-29, pp. 815-830, June 1981.

B. Stroustrup, The C++ Programming Language, Addison-Wesley, Redding and
Menlo Park, 1987.

INIX System V Release 2.0. User Reference Manual, AT&T Bell Laboratories,
Murray Hill, New Jersey, 1983.

MIDAS User Manual............ . e, What’s New in MIDAS 3.1

Appendices

A What’s New in MIDAS 3.1

This section outlines the differences between MIDAS 3.1 and MIDAS 2.1. The most
important enhancement in the new version of MIDAS is the addition of an integer
data type. Integers are useful in simulating digital systems. For example, the effects of
truncation and overflow can be readily evaluated in a digital noise-shaper when using
integer net signals in conjunction with models that operate on them. There are a few
limitations when using integers. The MIDAS integer data type is defined as a long
integer. On most machines, a long integeris limited to 32 bits. Moreover, only net
signals may be integers. In other words, integers may be generated only by models in
the NETLIST section. They may not be generated in the CONSTS or CONTROL sections.
In order to be able to use constants and control signals as parameter inputs to integers
models, all parameters of integer models supplied with the MIDAS distribution are
defined as doubles. They are converted to integers within the models.

The existance of integers in MIDAS 3.1 requires an added level of diligence on
the part of the model writer. As discussed in Section 3.7, assignment of integers to
doubles and vice versa must be done using “typecasting” or utility functions in order
to avoid type conflicts. See any book on C or C++ programming for more details on
resolving type conflicts.

In the past, differing complex number libraries on various platforms were a source
of portability problems. MIDAS 3.1 includes its own complex library to avoid these
problems. Likewise, differences in the random number generation routines in various
systems have prompted a new random number header file that can easily be changed
to reconfigure MIDAS for various platforms. See Appendix B for more information.
Some system calls that proved to be portability problems, such as those found in
time.h, have also been eliminated.

The file inclusion feature via the include command has been enhanced so that it
can utilize the standard UNIX file expansion character, ~. Furthermore, the output
of MIDAS 3.1 is along stdout as well as stderr to make it easier to separate the
netlist echo and error messages from the desired output. The MIDAS 3.1 distribution
includes 86 new models and 20 new example input files. Finally, the MIDAS 3.1
manual includes several relatively elaborate examples to help users become familiar
with the capabilities of the simulator quickly.

37

Installation........ ..o i MIDAS User Manual

B Installation

The source code for MIDAS is available on tape and 3.5” diskettes in UNIX tar format
[8], by Email (midas@par.Stanford. EDU), and via the following World Wide Web site

http://cis.stanford.edu/icl/wooley-grp/midas.html

In addition to standard UNIX utilities, a C++ compiler* is needed [7]. The instal-
lation process under UNIX is outlined below. First, mount the tape and go to the
directory you want to place MIDAS in, then type

tar x
If untarring from a file, type
tar xf <filename>

A directory named midas3 will be created along with several subdirectories that
contain the source code, documentation, and example files. To create an executable
file for the first time, go to the directory midas3/src and type

make install

The compilation will take some time. An executable file for MIDAS will be created
and stored in the directory midas3/bin. If using a C+4 compiler with a name other
than CC, specify the compiler name on the make command line. For example, when
compiling with the GNU C+4+ compiler, g++, use

make install CC=g++

To compile a new user defined model, place the model in midas3/src/user and, in
midas3/src, type

make models

Be sure to specify the C++ compiler name if it differs from CC.

Note that many compilers have options for execution speed optimization. On
some systems, setting a high level of optimization can result in significantly faster
execution rates. Compiler flags can be passed to the make program using the AFLAGS
variable on the command line. Consult your compiler manual regrading optimization
options.

4C++ is available without charge from the Free Software Foundation, Inc., 59 Temple Place -
Suite 330, Boston, MA 02111-1307 (telephone 617-542-5942, Email gnu@prep.ai.mit.edu). C++ is
also available from other vendors including AT&T, Software Sales and Marketing, P.O. Box 25000,
Greensboro, NC 27420 (telephone 800-828-UNIX).

38

MIDAS User Manual........ ... oo i Installation

The MIDAS distribution includes an examples directory, which has two subdirec-
tories, simple and advanced. These directories contain the MIDAS input files shown
in this manual as well as many other examples to help the new user come up to speed
quickly. These examples are supplied purely as a courtesy to the user and in no way
imply suitability for a particular application.

As discussed in Section 1.2, the output of MIDAS 3.1 is along two streams, stdout
and stderr. This makes it easy to separate the netlist echo and error messages from
the output data. Previous versions of MIDAS had their outputs only along the
stdout stream. For backward compatibility, there is a simple provision to change
the MIDAS output streams back to only stdout. Edit the file err.h in the directory
midas3/src/mcore/include and change the definition of ErrFile from stderr to
stdout. Then, reinstall the program by executing make as discussed above.

On some systems, the random number generation library functions, random and
srandom are not available. Instead, the rand and srand functions may exists. MIDAS
models that use random numbers, by default, employ the former set of functions
due to their superior statistical properties. The system can easily be reconfigured,
however, to use the latter set of function calls. To do this, edit the file randnums.h
in the directory midas3/src/mcore/include and change the definition of Rand Call
and Rand_Seed from random and srandom to rand and srand, respectively. Then,
reinstall the program by executing make as discussed above.

The documentation for MIDAS is kept in the directory midas3/manual. A
postscript file is available for immediate printing to a postscript printer. The manual
can also be generated from the source code, which is located in midas3/manual/doc.
All documents are formated for the typesetting language IATEX. To generate this
manual, switch to the directory midas3/doc/man and execute the make command.
The output file, root.dvi, is generated in TEX’s DVI format. Consult your local TEX
wizard for information regarding printing this file.

39

Error Messages ...t MIDAS User Manual

C Error Messages

MIDAS has extensive error detection and reporting capabilities for both input parsing
and simulation. The error messages and their meaning are listed below. Note that,
for historic reasons, the error messages use the term “element” instead of “model”.

The two terms are equivalent.

40

Cannot open file filename
The operating system was unable to open the file filename. Usually
occurs when an attempt was made to read a non-existent file.

Command line parameter #paramno not passed
The paramno’th command line parameter was not specified when
MIDAS was executed, and the expression $paramno in the input file
caused MIDAS to expect that parameter.

Constant constaniname already defined
Constants may only be assigned to once. An attempt was made to
reassign the constant constantname.

Constant constantname driven by output pinname
An attempt was made to connect the output pin pinname to the
constant constantname. Output pins may only be connected to net
signals.

Constant constaniname is not defined
The constant constantname has not been assigned a value in the
input file lines above the one in which this error occurred.

Constant constantname: illegal type (real expected)
Only real numbers are allowed in expressions. The constant con-
stantname must have the signal value type double, i.e., have been
assigned to a real number.

Control signal controlname already defined
Control signals may only appear in one FOR statement. The control
signal controlname appears in more than one FOR statement.

Control signal controlname driven by output pinname
An attempt was made to connect the output pin pinname to the
control signal controlname. Output pins may only be connected to
net signals.

Division by zero
One of the constants in the denominator of a constant expression
division evaluated to zero.

Element modelname is not defined
The model modelname is not a standard or user-defined model.

Illegal logarithmic range
A control range using the LOG form has a start and/or stop value
which is not a positive number.

Netlist cycle involving the signals: signallist
There is a loop involving the signals in signallist which does not
contain a delay. All feedback loops in MIDAS must contain a delay.

Non-constant signalname used in an expression
Only constants can appear in arithmetic expressions. To perform
arithmetic on control or net signals, the models add, sub, mul, and
div must be used.

Out of memory (heap) --- buy a bigger computer!
Bad news. Maybe it is possible to alter the parameters of the sim-
ulation so that less memory is needed.

Pin pinname is an input pin, not an output pin
Use the connector <- for this pin, not ->.

Pin pinname is an output pin, not an input pin
Use the connector -=> for this pin, not <-.

Pin pinname multiply defined
A model pin can only be connected to one signal. This error occurs
when the pin pinname is connected more than once in the same list
of pin connections.

Pin pinname not defined for element modelname
The pin pinname is not part of the model modelname. See the
model’s documentation for the pins which are.

Signal signalname in element modelname is not invariant
All parameters must be connected to invariant signals. The signal
signalname in the element modelname is connected to a parameter
and is not invariant.

MIDAS User Manual.......... o i, Error Messages

41

Error Messages ...t MIDAS User Manual

Signal signalname is not driven by an output
The signal signalname is not a constant, a control signal, or driven
by the output of a model.

Syntax error in file constant
See Section 2 for the proper file constant syntax.

Two sources defined for signal signalname
An attempt was made to connect the net signal signalname to more
than one output pin. A net signal may only be driven by one output
pin.

Type mismatch between signal signalname and pin pinname
The signal value type for the signal signalname must match that
expected by the pin pinname. See the model’s documentation for
the value type expected by each pin.

The following errors occur only when there are new user defined models.

Element modelname defined twice
An attempt was made to add a user defined model with the same
name as a previously defined model.

Function Clone() not defined for element modelname
The Clone() function is not defined in the C++ file for the model

modelname.

Function Execute() not defined for element modelname
The Execute() function is not defined in the C++ file for the model

modelname.

Errors which are not listed in this appendix indicate a bug in MIDAS.

42

MIDAS User Manual....... Model Library

D Model Library

This appendix describes the standard models supplied with MIDAS. They include
a variety of models that are useful for describing and analyzing linear and nonlinear
systems, as well as models that are used to generate inputs and outputs. Additional
models, for example to perform special analyses not in the standard version of MIDAS,
can be added by the user as discussed in Sections 3 and 4.

The table below lists all of the standard models, classified by their use. Detailed
model documentation then follows in alphabetical order sorted by the names of the
models. Unless otherwise indicated, the signal type expected by the pins of a model is
double. If a default value is not indicated for an input or a parameter, it is assumed
to be zero. No PARAMETER pins are of the type integer even in models that are
otherwise purely integer models. Parameters are converted to integers within some
models. This was done so that the CONST and CONTROL sections, which do not support
integers, can be used to set parameter pins of integer models. The nonalgebraic
models are identified with a “{”.

e Arithmetic operations:

add, add4, sub, mul, mul4, div, neg — Floating point functions.

addint, add4int, subint, mulint, mul4int, divint, negint -
Integer functions.

addintN, add4intN, subintN, mulintN, mul4intN, divintN —
N-bit integer functions.

e Functions:

double2int, int2double, double2vec, matrix2vec — Type
conversion.

double2N, int2N — Conversion to N-bit integers.

ifequal, ifgreater, ifelse, ifgtelse, mux2 — Conditional
assignment.

abs, dB, exp, 1n, pow, sqrt — Mathematical functions.

absint, powint, shift — Integer mathematical functions.

zins, zoh, zinsint, zohint — Zero insertions and zero-order holds.

sigmalj, sigma2f — Sigma-delta modulators.

distortDiff, distortIter, settle - Miscellaneous functions.

e Estimation:

meanfj, powerf, variancef — Statistical functions.

43

Model Library MIDAS User Manual

44

minj, mininvec{, mininmat{, maxj, maxinvecf, maxinmatj —
Extrema.
minint{, maxintj — Integer extrema.

e Quantization:

limiterf, limiterint{ — Hard clippers.

quant, quantint — Two level quantizers.

quantizer, quantizerint — User defined quantizers.
quantUniform, quantUniformint — Uniform quantizers.
quantnldac, quantnlave — Quantizers with random mismatches.

e Function generators:

zeros, ones, consts — Constant output sources.
impulse, impulseint — Kronecker deltas.

sin, cos, sinzins, sinzoh — Sinusoidal sources.
sinN, sinNzins, sinNzoh — N-bit sinusoidal sources.
pulse — Pulse generator.

divider — Square wave generator.

gauss, uniform — Random number generators.
timef, timeint{ — Time base for simulation.

o Filters:

decimate, decimateint — Sub-samplers.

delayf, delayintf, pureDelayji — Delay elements.
clkDelayf, clkDelayintf — Triggerable delay elements.
iir, iirint — Infinite impulse response filters.

linfir, linfirint — Linear phase filters.

sinc3, sinc3int, sinc4, sinc4int — Comb filters.
sincN, sincNint — Nth order comb filters.

skip, skipint — Skip initial transient of a signal.
tapDelayj, tapDelayintj — Tapped delay lines.

e Analyses:

distof, intermodj — Distortion analysis.

dftf, £ftf — Discrete Fourier transform.

rectangularf — Rectangular windowing function.

Blackmanj, BHarrisf, Hammingj, Hanningj, Nuttall30f —
Windowing functions.

MIDAS User Manual.......... oot

pdfi — Probability density.
padi — Pad a sequence with a constant.

e I/O Primitives:

doubleInj — Read floating point numbers from file.
integerInf — Read integers from file.

complexInj — Read complex numbers from file.
vectorInf — Read a vector from file.

matrixInj — Read a matrix from file.

hexinf — Hexadecimal input from file.

monitor — Print name and value of signal.

print — Formated output.

Model Library

45

AD S MIDAS User Manual

NAME

abs — Absolute value.

INPUT
X
OoOuTPUT
y
FUNCTION
y = ||
EXAMPLE
The model file line:

abs (x<-(-4.7), y->out);

sets the value of out to 4.7.

46

MIDAS User Manual. e e e

NAME

absint — Absolute value of an integer.

INPUT

x — An integer.

OoOuTPUT

y — An integer.
FUNCTION

y = ||
EXAMPLE

The model file line:

absint (x<-(-4), y->out);

sets the value of out to 4.

absint

47

add ... MIDAS User Manual

NAME
add — Output y is the sum of inputs x1 and x2.

INPUTS

x1, x2
ouTPUT

y
FUNCTION

y =zl + 22

EXAMPLE
add (x1<-a, x2<-b, y->c);

48

MIDAS User Manual......... .. e i add4

NAME
add4 — Output y is a weighted sum of up to four inputs.

INPUTS
x1, x2, x3, x4
ouTPUT
y
PARAMETERS
al, a2, a3, a4 — Weighting factors. Default: 1.
FUNCTION
Y = a1T1 + a2 + a3z + 444

EXAMPLE
The model line:
add4 (x1<-a, a2<-(-2), x2<-b, a3<-3, x3<-c, y->y);

performs the function:

y=a—2b+ 3¢

49

add4int MIDAS User Manual

NAME
add4int — Output y is the integer weighted sum of up to four integers.

INPUTS

x1, x2, x3, x4 — Integers.

OuUTPUT
y — An integer.

PARAMETERS
al, a2, a3, a4 — Weighting factors. Default: 1.

FUNCTION
Y = a1x1 + ATy + a3z + 444
EXAMPLE
The model line:
add4int (x1<-a, a2<-(-2), x2<-b, a3<-3, x3<-c, y->y);

performs the function:

y=a—2b+ 3¢

50

MIDAS User Manual......... ... e add4intN

NAME
add4intN — Output y is the n-bit, 2’s complement weighted sum of up to four
integers.
INPUTS

x1, x2, x3, x4 — Integers.

ouTPUT

y — The n-bit integer output.

yfull — The non-truncated integer output.

overflow — Number of times an overflow has occurred.
underflow — Number of times an underflow has occurred.

PARAMETERS

al, a2, a3, a4 — Weighting factors. Default: 1.

n — Number of bits with which the output is represented. Default: 31.

clip — A flag indicating whether the output should change during an overflow
or underflow or remain clipped at the extremum. If clip is 0, the output
is clipped, otherwise it wraps around. Default: 0.

FUNCTION

If the sum of the weighted inputs is greater than the maximum, 2”1 —1, or less
than the minimum, —27~!, allowed by an n-bit, 2’s complement representation,
y is either clipped at the extermum or allowed to wrap around in a 2’s comple-
ment fashion, depending on the value of the flag clip. Everytime an overflow
or underflow occurs, the overflow or the underflow output is incremented,
respectively.

BUG

The maximum value of n is machine dependent and is typically 31. If a greater
value is specified, the model automatically reduces n, without warning, to the
maximum supported by the platform on which the program is running.

51

addint MIDAS User Manual

NAME

addint — Output y is the integer sum of integer inputs x1 and x2.

INPUTS

x1, x2 — Integers.

OUTPUT
y — An integer.

FUNCTION
y =zl + 22

EXAMPLE

addint (x1<-a, x2<-b, y->c);

52

MIDAS User Manual......... ... i addintN

NAME

addintN — Output y is the n-bit, 2’s complement sum of integer inputs x1 and
x2.

INPUTS

x1, x2 — Integers.

ouTPUT

y — The n-bit integer output.

yfull — The non-truncated integer output.

overflow — Number of times an overflow has occurred.
underflow — Number of times an underflow has occurred.

PARAMETERS

n — Number of bits with which the output is represented. Default: 31.

clip — A flag indicating whether the output should change during an overflow
or underflow or remain clipped at the extremum. If clip is 0, the output
is clipped, otherwise it wraps around. Default: 0.

FUNCTION

If the sum of the inputs is greater than the maximum, 2"~ — 1, or less than the
minimum, —2"7!, allowed by an n-bit, 2’s complement representation, y is either
clipped at the extermum or allowed to wrap around in a 2’s complement fashion,
depending on the value of the flag clip. Everytime an overflow or underflow
occurs, the overflow or the underflow output is incremented, respectively.

BUG

The maximum value of n is machine dependent and is typically 31. If a greater
value is specified, the model automatically reduces n, without warning, to the
maximum supported by the platform on which the program is running.

33

BHaArris ..o oo MIDAS User Manual

NAME

BHarris — A scaled Blackman-Harris window. Intended for use with the £ft
and dft models.

INPUT

x — Input samples, floating point numbers.
xint — Input samples, integers.

OUTPUTS

w — A vector containing the windowed and scaled input samples, produced at
the end of the simulation.
N — The size of w, i.e., the number of samples used, an integer.

PARAMETERS

refernce — Reference level for power: amplitude of sinusoid corresponding to
0dB. Default: 0.5.

DFT — A flag indicating whether the output will be used with the £ft or the
dft model. If DFT is 0 the length of the output sequence is truncated to a
power of 2, otherwise it is unaltered. Default: 0.

FUNCTION

This model first stores a sequence of simulation results as a vector of input
samples. The x input pin should be used if the input is a real number and
the xint input pin should be used if the input in an integer. Upon completion
of the simulation, depending on the value of the DFT parameter, this vector is
either left unchanged or truncated so as to contain the first 2" samples, where
n is an integer between 1 and a machine dependent value, typically 31. Then
these samples are windowed using the Blackman-Harris window. Finally, the
windowed samples are scaled such that when the FFT or DFT is taken, the
result will be the spectral power of the input normalized to the power of a
sinewave of amplitude given by the reference parameter.

EXAMPLE
The model lines:

BHarris (x<-x, w->x_win);
fft (x<-x_win, fs<-fs, S->S);

54

MIDAS User Manual e e

print (x1<-S);

BHarris

print an estimate of the spectrum of x, which has a sampling rate of fs.

REFERENCE

A. Oppenheim and R. Schafer, “Discrete-Time Signal Processing,”

Hall, 1989.

Prentice

35

Blackman MIDAS User Manual

NAME

Blackman — A scaled Blackman window. Intended for use with the £ft and dft
models.

INPUT

x — Input samples, floating point numbers.
xint — Input samples, integers.

OUTPUTS

w — A vector containing the windowed and scaled input samples, produced at
the end of the simulation.
N — The size of w, i.e., the number of samples used, an integer.

PARAMETERS

refernce — Reference level for power: amplitude of sinusoid corresponding to
0dB. Default: 0.5.

DFT — A flag indicating whether the output will be used with the £ft or the
dft model. If DFT is 0 the length of the output sequence is truncated to a
power of 2, otherwise it is unaltered. Default: 0.

FUNCTION

This model first stores a sequence of simulation results as a vector of input
samples. The x input pin should be used if the input is a real number and
the xint input pin should be used if the input in an integer. Upon completion
of the simulation, depending on the value of the DFT parameter, this vector is
either left unchanged or truncated so as to contain the first 2" samples, where
n is an integer between 1 and a machine dependent value, typically 31. Then
these samples are windowed using the Blackman window. Finally, the windowed
samples are scaled such that when the FFT or DFT is taken, the result will
be the spectral power of the input normalized to the power of a sinewave of
amplitude given by the reference parameter.

EXAMPLE
The model lines:

Blackman (x<-x, w->x_win);
fft (x<-x_win, fs<-fs, S->S);

56

MIDAS User Manual

print (x1<-S);

Blackman

print an estimate of the spectrum of x, which has a sampling rate of fs.

REFERENCE

A. Oppenheim and R. Schafer, “Discrete-Time Signal Processing,” Prentice

Hall, 1989.

57

clkDelay MIDAS User Manual

NAME
clkDelay — A delay element triggered by a clock input.

INPUTS

x1, x2

clk — Trigger.
OUTPUTS

y — Delayed (late) output.
v — Immediate output.

PARAMETERS
x0 — Initial state (y[0]). Default: 0.
cl, c2 — Coefficients. Default: 1.
FUNCTION
When c1k is greater than 0.5:

ylk+ 1] =cl - z1[k] + 2 - 22[k]
v[k] = ¢l - z1[k] + 2 - 22[k]

otherwise, the outputs do not change.

58

MIDAS User Manual..........c. ...

NAME

clkDelayint

clkDelayint — A delay element that is triggered by a clock input and whose

inputs and outputs are integers.

INPUTS

x1, x2 — Integers.
clk — Trigger, an integer.

OUTPUTS

y — Delayed (late) output, an integer.

v — Immediate output, an integer.

PARAMETERS
x0 — Initial state (y[0]). Default: 0.
cl, c2 — Coefficients. Default: 1.
FUNCTION
When cl1k is not equal to 0:

ylk+ 1] =cl - z1[k] + 2 - 22[k]
v[k] = cl - z1[k] + 2 - 22[k]

otherwise, the outputs do not change.

39

complexIn...... ... MIDAS User Manual

NAME

complexIn — A clock whose output is data read from an input file.

PARAMETER
file — The input file.

ouTPUT

y — A complex number.

FUNCTION

The input data is read in as pairs of double precision, floating point numbers,
the first of which becomes the real part and the second the imaginary part of
the complex number y. y then acts as a clock signal for the netlist. Therefore,
there is no need for a time base model.

EXAMPLE
The input file:

NETLIST
complexIn (file<- <data.dat>, y->num);
print (x1<-num, x2<-"\n");

END

prints the contents of the file “data.dat” to the standard output as complex
numbers.

60

MIDAS User Manual i consts

NAME

consts — Output a constant whenever the input changes.

INPUTS
t

OUTPUTS

y — Output samples, floating point numbers.
yint — Output samples, integers.

PARAMETERS

constant — Output value. Default: 0.

FUNCTION

The outputs y and yint are set equal to constant and triggered whenever the
input changes. If constant is a real number, it is rounded to the nearest integer
when yint is set equal to it.

61

COS o e v et et e e e MIDAS User Manual

NAME

cos — Sampled sinusoidal waveform generator.

INPUT

t — Time.
OouTPUT
y

PARAMETERS

A — Amplitude of sinusoid with gain at 0dB. Default: 1.0.
gain — Modify amplitude of sinusoid by gain dB. Default: 0.
f — Frequency. Default: 1.0.

phase — Phase in radians. Default: 0.0.

FUNCTION
y = A - 109920 . cos(27 ft + phase)

EXAMPLE

The model lines:

cos (t<-1/2000, A<-5, £<-1000, y->0Out);
monitor (x<-0Out);

print “Out = -5.000".

62

MIDAS User Manual e e et

NAME
dB — Convert the input to dB.

INPUT

X
OoOuTPUT

y
PARAMETER

a — Conversion factor. Default: 10.
FUNCTION

y = alogo()
EXAMPLE

The model line:

db (x<-10e5, y->y);

sets the output y to 50.

BUG

The input x is clipped to a minimum value of 1

030,

63

decimate ... MIDAS User Manual

NAME

decimate — Decimator.

INPUT

X
ouTPUT

y
PARAMETER

M — Decimation ratio. Default: 1.

FUNCTION

Signal y is x sampled at 1/M times the rate of x. The first sample of x is always
output, then M-1 samples are skipped before the next is output.

64

MIDAS User Manual e e decimateint

NAME

decimateint — Decimator for integer signals.

INPUT

x — An integer.

OuUTPUT
y — An integer.

PARAMETER

M — Decimation ratio. Default: 1.

FUNCTION

Signal y is x sampled at 1/M times the rate of x. The first sample of x is always
output, then M-1 samples are skipped before the next is output.

65

delay ... MIDAS User Manual

NAME
delay — Output y is the sum of inputs x1 and x2 delayed by one clock cycle.

INPUTS

x1, x2

OUTPUTS

y — Delayed (late) output.
v — Immediate output.

PARAMETERS

x0 — Initial state (y[0]). Default: 0.
cl, c2 — Coefficients. Default: 1.

FUNCTION
ylk+ 1] = cl - z1[k] + 2 - 22[k]
v[k] = ¢l - 21[k] + 2 - 22[k]
EXAMPLE
The model line:
delay (x1<-in, x2<-out, y->out, cl1<-2, c2<-0.9)
creates a leaky integrator with the transfer function:

2. 271

1—-09-2-1

66

MIDAS User Manual i,

NAME

delayint

delayint — Integer output y is equal to integer input x delayed by one clock

cycle.

INPUT

x — An integer.

OUTPUTS

y — Delayed (late) output, an integer.
v — Immediate output, an integer.

PARAMETER
x0 — Initial state (y[0]). Default: 0.

FUNCTION

ok +1] = 1]
v[k] = x1[k]

EXAMPLE

delayint (x1<-input, y->output);

67

AE . MIDAS User Manual

NAME

dft — Compute the discrete Fourier transform of a real sequence using the
conventional DFT algorithm, not the FFT algorithm, so that the length
of the input need not be a power of 2.

INPUT

x — A vector containing the input samples. Its size need not be a power of 2.

OUTPUTS

A — A 2 x N matrix representing a plot of the magnitude of the DFT of the
input sequence. The first column of the matrix contains the frequency;
the second column contains the magnitude of the spectrum. N is half the
size of the input vector, i.e., only half of the spectrum is output. However,
since the magnitude of the DFT of a real sequence is symmetric about
N/2, the other half of the spectrum is just a mirror image of this half.

S — A Matrix similar to A, but with the magnitude in units of dB.

P — A Matrix similar to A containing the phase of the input sequence.

PARAMETER
fs — The frequency at which the input x was sampled.

FUNCTION

This model computes the DFT of the input sequence. When used in conjunction
with a window model, the result is an estimate of the spectrum of a sequence.
This model executes much more slowly than the fft model and should be used
only when truncating the length of the input to the nearest power of 2 results
in an unacceptable loss of information.

EXAMPLE

The model lines:

Nuttall30 (x<-x, w->x_win, DFT<-1);
dft (x<-x_win, fs<-fs, S->S);
print (x1<-S);

print an estimate of the spectrum of x, which has a sampling rate of fs.

63

MIDAS User Manual......... .. e e disto

NAME

disto — Distortion analysis for noisy sinusoidal signals.

INPUT

x — Input samples.

OUTPUTS

amplitude — Vector with amplitude of fundamental and harmonics.

power — Vector with power of signal and harmonics in dB below reference.
mean — Mean value of signal x (excluded from snr and mse computations).
snr — Signal-to-noise ratio in dB, excluding harmonics.

tsnr — Signal-to-noise ratio in dB, including harmonics.

hsnr — Signal-to-noise ratio in dB, only harmonics.

mse — Mean squared error in dB below reference, excluding harmonics.
tmse — Mean squared error in dB below reference, including harmonics.
hmse — Mean squared error in dB below reference, only harmonics.

thd -~ Total harmonic distortion in percent (100 - o7, /02,.).

festimate — Estimated signal frequency relative to sampling rate (when £xT
was not specified).

PARAMETERS

£xT — Frequency of fundamental. Default: estimated from data.
fs — Sampling frequency. Default: 1.

harmonics — Number of harmonics to be computed. Default: 0, i.e. only the
fundamental. Maximum: 60.

tol — Absolute tolerance of frequency estimate when £xT is not specified. De-
fault: 1076,

reference — Reference level for power: amplitude of sinusoid corresponding to

0dB. Default: 0.5.

BUGS

Numerically unstable if the input sequence is longer than about ten million
samples.

69

IS0 - o MIDAS User Manual

REFERENCE

B. Boser, K. Karmen, H. Martin, and B. Wooley, “Simulating and Testing
Oversampled Analog-to-Digital Converters,” IEEE Trans. on Computer-Aided
Design, vol. 7, June 1988.

70

MIDAS User Manual....... ... oo e distortDiff

NAME

distortDiff — Output y is a weighted sum of the difference of squared and
cubed inputs.

INPUTS
x1, x2

OouTPUT
y

PARAMETERS

alphal — Quadratic weighting factor. Default: 100 x 1075,
alpha2 — Cubic weighting factor. Default: 10 x 107¢.

FUNCTION

y = alphay - (23 — 23) + alphay - (23 — z3)

NOTES

This function is useful in simulating certain circuit nonlinearities such as capac-
itor voltage coefficients.

71

distortIter.o o MIDAS User Manual

NAME

distortIter — Output y is an iterative solution to a cubic equation.

INPUTS

xin, xfb
ouTPUT

y

PARAMETERS

alphal — Quadratic weighting factor. Default: 100 x 1075,
alpha2 — Cubic weighting factor. Default: 10 x 107¢.
maxiter — Maximum number of iterations. Default: 5.

tol — Convergence tolerance. Default: 107¢.

FUNCTION
Solve for y where y = xin + x fb — alphay - (y* — x fb?) + alphas - (y* — z fb?)
NOTES

Iteration is performed either maxiter times or until the estimates converge to
tol. This model is useful in simulating certain circuit nonlinearities, such as
capacitor voltage coefficients, that appear in a feedback loop.

BUGS

The iterative solution may not converge if the weighting factors become too
large. Other solutions to the above equation, such as Cardano’s method, may
be implemented.

72

MIDAS User Manual.......... ..o i div

NAME
div — Output y is the quotient of inputs x1 and x2.

INPUTS

x1, x2
OUTPUT

y
FUNCTION

y=xl/x2
EXAMPLE

div (x1<-a, x2<-b, y->c);

BUGS

Proper error message is generated for division by zero, but not for overflow.

73

AIVIder . oo MIDAS User Manual

NAME

divider — Frequency divider.

INPUT

x — Reference frequency.
OuTPUT

y

PARAMETERS

ym — Negative output level. Default: -0.5.
yp — Positive output level. Default: 0.5.
ratio — Ratio of input (x) frequency to output (y) frequency. Default: 2.

FUNCTION

Square wave with levels ym and yp at a frequency which is 1/ratio times that
of the input.

BUG

Accepts only integer ratios larger than or equal to 2. Any lower ratio specified
will be rounded up to this value without warning. For odd ratios, the interval
when y = yp is slightly longer than the one when y = ym.

74

MIDAS User Manual. e e divint

NAME

divint — Integer output y is the quotient of integer inputs x1 and x2.

INPUTS

x1, x2 — Integers.

ouTPUT

y — An integer.
remainder — An integer.

FUNCTION
y=xl/x2

EXAMPLE

divint (x1<-a, x2<-b, y->c, remainder->d);

75

AIVIntIN . MIDAS User Manual

NAME

divintN — Integer output y is the quotient of integer inputs x1 and x2.

INPUTS

x1, x2 — Integers.

ouTPUT

y — An integer.

yfull — The non-truncated integer output.

overflow — Number of times an overflow has occurred.
underflow — Number of times an underflow has occurred.
remainder — An integer.

PARAMETERS

n — Number of bits with which the output is represented. Default: 31.

clip — A flag indicating whether the output should change during an overflow
or underflow or remain clipped at the extremum. If clip is 0, the output
is clipped, otherwise it wraps around. Default: 0.

FUNCTION

If the result of the division is greater than the maximum, 27~ — 1, or less than
the minimum, —2"71, allowed by an n-bit, 2’s complement representation, y
is either clipped at the extermum or allowed to wrap around in a 2’s comple-
ment fashion, depending on the value of the flag clip. Everytime an overflow
or underflow occurs, the overflow or the underflow output is incremented,
respectively.

BUG

The maximum value of n is machine dependent and is typically 31. If a greater
value is specified, the model automatically reduces n, without warning, to the
maximum supported by the platform on which the program is running.

76

MIDAS User Manualo double2int

NAME

double2int — Convert a double precision floating point number to an integer.

INPUT

x — A floating point number.

OouUTPUT
y — An integer.

FUNCTION
Output y is equal to the input x rounded off to the nearest integer.

77

double2N MIDAS User Manual

NAME
double2N — Output y is the n-bit, 2’s complement conversion of floating point
input x.
INPUTS

x — A floating point number.

ouTPUT

y — The n-bit integer output.
overflow — Number of times an overflow has occurred.
underflow — Number of times an underflow has occurred.

PARAMETERS

n — Number of bits with which the output is represented. Default: 31.

clip — A flag indicating whether the output should change during an overflow
or underflow or remain clipped at the extremum. If clip is 0, the output
is clipped, otherwise it wraps around. Default: 0.

FUNCTION

If the input is greater than the maximum, 27~ — 1, or less than the minimum,
—27~1 “allowed by an n-bit, 2’s complement representation, y is either clipped at
the extermum or allowed to wrap around in a 2’s complement fashion, depending
on the value of the flag clip. Everytime an overflow or underflow occurs, the
overflow or the underflow output is incremented, respectively.

BUG

The maximum value of n is machine dependent and is typically 31. If a greater
value is specified, the model automatically reduces n, without warning, to the
maximum supported by the platform on which the program is running.

78

MIDAS User Manual........ ..o e e e double2vec

NAME

double2vec — Convert a sequence of floating point numbers to a vector.

INPUT

x — A floating point number.

ouTPUT

y — A vector containing the inputs, presented at the end of the simulation.

FUNCTION

Output y is a vector whose elements are the inputs x.

79

doubleln MIDAS User Manual

NAME

doublelIn — A clock whose output is data read from an input file.

PARAMETER
file — The input file.

ouTPUT

y — A double precision number.

FUNCTION

The output pin y is set equal to data read in from file as double precision,
floating point numbers. y then acts as a clock signal for the netlist. Therefore,
there is no need for a time base model.

EXAMPLE
The input file:

NETLIST
doubleIn (file<- <data.dat>, y->num);
print (x1<-num, x2<-"\n");

END

prints the contents of the file “data.dat” to the standard output as double
precision, floating point numbers.

80

MIDAS User Manual e e e

NAME

exp — Output y is an exponential with base e of input x.

INPUT
X
OUTPUT
y
FUNCTION
y=e€"
EXAMPLE

exp (x<-a, y->b);

81

1 AR MIDAS User Manual

NAME

fft — Compute the discreye Fourier transform of a real sequence using the FFT
algorithm.

INPUT
x — A vector containing the input samples. Its size must be 2", where n is an
integer greater than 1.
OUTPUTS

A — A 2 x N matrix representing a plot of the magnitude of the DFT of the
input sequence. The first column of the matrix contains the frequency;
the second column contains the magnitude of the spectrum. N is half the
size of the input vector, i.e., only half of the spectrum is output. However,
since the magnitude of the DFT of a real sequence is symmetric about
N/2, the other half of the spectrum is just a mirror image of this half.

S — A Matrix similar to A, but with the magnitude in units of dB.

P — A Matrix similar to A containing the phase of the input sequence.

PARAMETER
fs — The frequency at which the input x was sampled.

FUNCTION

This model computes the DFT of the input sequence. When used in conjunction
with a window model, the result is an estimate of the spectrum of a sequence.

EXAMPLE
The model lines:

Nuttall30 (x<-x, w->x_win);
fft (x<-x_win, fs<-fs, S->S);
print (x1<-S);

print an estimate of the spectrum of x, which has a sampling rate of fs.

82

MIDAS User Manual e gauss

NAME

gauss — Gaussian random number generator.

INPUT

t — Clock; a random number is generated every time t changes.

ouTPUT
y
PARAMETERS

mean — Mean of the random numbers. Default: 0.
stddev — Standard deviation of random numbers. Default: 1.
seed — Seed for random number generator. Default: 1.

FUNCTION

Generates independent Gaussian random numbers.

EXAMPLE

The model lines:

time (k->kT, kstart<-1, kstop<-10);
gauss (t<-kT, y->y);
monitor (x<-y);

print 10 random numbers that have a gaussian distribution with a mean of 0
and a standard deviation of 1.

BUG

This model is based on the standard UNIX function “random.c”; results might
be incorrect on other systems. See the UNIX manual for the properties of
“random”.

83

Hamming MIDAS User Manual

NAME

Hamming — A scaled Hamming window. Intended for use with the £ft and dft
models.

INPUT

x — Input samples, floating point numbers.
xint — Input samples, integers.

OUTPUTS

w — A vector containing the windowed and scaled input samples, produced at
the end of the simulation.
N — The size of w, i.e., the number of samples used, an integer.

PARAMETERS

refernce — Reference level for power: amplitude of sinusoid corresponding to
0dB. Default: 0.5.

DFT — A flag indicating whether the output will be used with the £ft or the
dft model. If DFT is 0 the length of the output sequence is truncated to a
power of 2, otherwise it is unaltered. Default: 0.

FUNCTION

This model first stores a sequence of simulation results as a vector of input
samples. The x input pin should be used if the input is a real number and
the xint input pin should be used if the input in an integer. Upon completion
of the simulation, depending on the value of the DFT parameter, this vector is
either left unchanged or truncated so as to contain the first 2" samples, where
n is an integer between 1 and a machine dependent value, typically 31. Then
these samples are windowed using the Hamming window. Finally, the windowed
samples are scaled such that when the FFT or DFT is taken, the result will
be the spectral power of the input normalized to the power of a sinewave of
amplitude given by the reference parameter.

EXAMPLE
The model lines:

Hamming (x<-x, w->x_win);
fft (x<-x_win, fs<-fs, S->S);

84

MIDAS User Manual...... ..o i Hamming

print (x1<-S);

print an estimate of the spectrum of x, which has a sampling rate of fs.

REFERENCE

A. Oppenheim and R. Schafer, “Discrete-Time Signal Processing,”

Hall, 1989.

Prentice

85

Hanning ... e MIDAS User Manual

NAME

Hanning — A scaled Hanning window. Intended for use with the £ft and dft
models.

INPUT

x — Input samples, floating point numbers.
xint — Input samples, integers.

OUTPUTS

w — A vector containing the windowed and scaled input samples, produced at
the end of the simulation.
N — The size of w, i.e., the number of samples used, an integer.

PARAMETERS

refernce — Reference level for power: amplitude of sinusoid corresponding to
0dB. Default: 0.5.

DFT — A flag indicating whether the output will be used with the £ft or the
dft model. If DFT is 0 the length of the output sequence is truncated to a
power of 2, otherwise it is unaltered. Default: 0.

FUNCTION

This model first stores a sequence of simulation results as a vector of input
samples. The x input pin should be used if the input is a real number and
the xint input pin should be used if the input in an integer. Upon completion
of the simulation, depending on the value of the DFT parameter, this vector is
either left unchanged or truncated so as to contain the first 2" samples, where
n is an integer between 1 and a machine dependent value, typically 31. Then
these samples are windowed using the Hanning window. Finally, the windowed
samples are scaled such that when the FFT or DFT is taken, the result will
be the spectral power of the input normalized to the power of a sinewave of
amplitude given by the reference parameter.

EXAMPLE
The model lines:

Hanning (x<-x, w->x_win);
fft (x<-x_win, fs<-fs, S->S);

86

MIDAS User Manual......... ... e e

print (x1<-S);

Hanning

print an estimate of the spectrum of x, which has a sampling rate of fs.

REFERENCE

A. Oppenheim and R. Schafer, “Discrete-Time Signal Processing,”

Hall, 1989.

Prentice

87

HeXan ..o MIDAS User Manual

NAME

hexin — A clock whose output depends on the data read from an input file.
Useful for reading test data for analysis by MIDAS.

PARAMETER

file — The input file. Data is encoded in hexadecimal format. Each line starts
with the characters “0x”, followed by 8 hexadecimal digits (0-9, A-F, a—f).

OoOuTPUT
y — Is —0.5 for input bit 0, +0.5 for input bit 1.
FUNCTION

The input data is taken as a stream of bits which define a square wave. The least
significant bit of a data word represents the first output bit from the word, the
most significant bit represents the last output bit from the word. The resulting

stream of bits is sent to the output y as a clock with a 0 bit producing a value
of —0.5 and a 1 bit producing a value of +0.5.

88

MIDAS User Manual. e e ifelse

NAME

ifelse — Conditional execution. OQutput y is set equal to the input x1 if and
only if al is equal to a2. Otherwise, y is set equal to the input x2.

INPUT

x1, x2
al, a2 — Default: 0.

ouTPUT
y
FUNCTION

If a; = ag, then y = xq, else y = x.

39

ifequal MIDAS User Manual

NAME

ifequal — Conditional execution. Output y is set to the input x if and only if
al is equal to a2.

INPUT

X
al, a2 — Default: 0.

ouTPUT
y
FUNCTION

If a; = ay, then y = z.

EXAMPLE
The input file:

CONTROL

FOR m = [0, 1, 2, 3];
NETLIST

ifequal (al<-m, a2<-2, x<-m, y->trig);

print (trigger<-trig, x1<-"m is", x2<-m, x3<-"\n");
END

produces the output:

m is 2

90

MIDAS User Manual..... ... oo i ifgreater

NAME

ifgreater — Conditional execution. Output y is set equal to the input x1 if
and only if al is greater than a2.

INPUT

X
al, a2 — Default: 0.

ouTPUT
y
FUNCTION

If a; > as, then y = x;.

91

ifgtelse ... MIDAS User Manual

NAME

ifgtelse — Conditional execution. OQutput y is set equal to the input x1 if and
only if al is greater than a2. Otherwise, y is set equal to the input x2.

INPUT

x1, x2
al, a2 — Default: 0.

ouTPUT
y
FUNCTION

If ay > ay, then y = x4, else y = x,.

92

MIDAS User Manual........ ... e e i ir

NAME

iir — An infinite impulse response filter.

INPUT

X

ouTPUT
y
PARAMETER

a — A vector containing the coefficients of the denominator in the format shown
below. Note that the first coefficient is always set to 1 and the sign of the
coefficients in vector a is reversed.

b — A vector containing the coefficients of the numerator.

M — Decimation ratio. Default: 1.

skip — Number of outputs to be suppressed from initial transient. Default:
Filter order plus 1.

FUNCTION

If the length of vector a is M and the length of vector b is IV, the filter transfer
function is:

N-1 —i
Zi:o bz -z
1— Zgal a; -zt

H(z) =

93

IIPINE o MIDAS User Manual

NAME

iirint — An infinite impulse response filter with integer input.

INPUT

x — An integer.

ouTPUT
y
PARAMETER

a — A vector containing the coefficients of the denominator in the format shown
below. Note that the first coefficient is always set to 1 and the sign of the
coefficients in vector a is reversed.

b — A vector containing the coefficients of the numerator.

M — Decimation ratio. Default: 1.

skip — Number of outputs to be suppressed from initial transient. Default:
Filter order plus 1.

FUNCTION

If the length of vector a is M and the length of vector b is IV, the filter transfer
function is:

N-1 —i
Zi:o bz -z
1— Zgal a; -zt

H(z) =

94

MIDAS User Manual......... ... e e

NAME
impulse — Kronecker delta at ¢t = ¢0.

INPUT

t — Time.

OouUTPUT
y — 1.0 at t = 0, 0.0 otherwise.

PARAMETER
t0 — Time at which the impulse should be produced. Default: 0.

EXAMPLE

The model lines:

time (k->kT, kstop<-5);
impulse (t<-kT, t0<-2, y->imp);
monitor (x<-imp);

produce the sequence {0,0,1,0,0,0} at the output imp.

impulse

95

impulseint MIDAS User Manual

NAME

impulseint — Kronecker delta at ¢ = t0.
INPUT

t — Time.
ouTPUT

y — Integer output: 1 at ¢ = 10, 0 otherwise.

PARAMETER
t0 — Time at which the impulse should be produced. Default: 0.

EXAMPLE

The model lines:

time (k->kT, kstop<-5);
impulseint (t<-kT, t0<-2, y->imp);
monitor (x<-imp);

produce the sequence {0,0,1,0,0,0} at the output imp.

96

MIDAS User Manualo int2double

NAME

int2double — Convert an integer to a double precision floating point number.
INPUT

x — An integer.
OUTPUT

y — A floating point number.

FUNCTION

Output y is the double precision, floating point representation of the input x.

97

INE 2N Lo MIDAS User Manual

NAME

int2N — Output y is the n-bit, 2’s complement conversion of integer input x.

INPUTS

x — An integer.

ouTPUT

y — The n-bit integer output.
overflow — Number of times an overflow has occurred.
underflow — Number of times an underflow has occurred.

PARAMETERS

n — Number of bits with which the output is represented. Default: 31.

clip — A flag indicating whether the output should change during an overflow
or underflow or remain clipped at the extremum. If clip is 0, the output
is clipped, otherwise it wraps around. Default: 0.

FUNCTION

If the input is greater than the maximum, 2"~ — 1, or less than the minimum,
—27~1 "allowed by an n-bit, 2’s complement representation, y is either clipped at
the extermum or allowed to wrap around in a 2’s complement fashion, depending
on the value of the flag clip. Everytime an overflow or underflow occurs, the
overflow or the underflow output is incremented, respectively.

BUG

The maximum value of n is machine dependent and is typically 31. If a greater
value is specified, the model automatically reduces n, without warning, to the
maximum supported by the platform on which the program is running.

98

MIDAS User Manual it integerIn

NAME

integerIn — A clock whose output is data read from an input file.

PARAMETER
file — The input file.

OUTPUT
y — An integer.

FUNCTION

The output pin y is set equal to data read in from file as integers. y then
acts as a clock signal for the netlist. Therefore, there is no need for a time base
model.

EXAMPLE
The input file:

NETLIST
integerIn (file<- <data.dat>, y->num);
print (x1<-num, x2<-"\n");

END

prints the contents of the file “data.dat” to the standard output as integers.

99

INtermod ... MIDAS User Manual

NAME

intermod — Intermodulation distortion analysis for noisy sinusoidal signals.

INPUT

x — Input samples.

OUTPUTS

amplitude — Vector with amplitude of test signals and intermodulation prod-
ucts.

power — Vector with power of test signals and intermodulation products in dB
below reference.

freq — Vector with frequencies corresponding to the outputs of amplitude and
power.

mean — Mean value of signal x (excluded from snr and mse computations).

snr — Sum of signals-to-noise ratio in dB, excluding intermodulation products.

tsnr — Sum of signals-to-noise ratio in dB, including intermodulation products.

hsnr — Sum of signals-to-noise ratio in dB, only intermodulation products.

mse — Mean squared error in dB below reference, excluding intermodulation
products.

tmse — Mean squared error in dB below reference, including intermodulation
products.

hmse — Mean squared error in dB below reference, only intermodulation prod-
ucts.

thd - Total harmonic distortion in percent (100 - o3,/02,).

PARAMETERS

100

f1 — Frequency of a test signal. Default: estimated from data.

£2 — Frequency of another test signal. Default: estimated from data.

fs — Sampling frequency. Default: 1.

IMorder — Order of intermodulation products to be computed. Default: 0, i.e.
only the test signals. Maximum: 60.

bandl — Lower frequency of interest for searching for intermodulation products.
Default: 0.

bandh — Upper frequency of interest for searching for intermodulation products.

tol — Tolerance of frequency estimate when £1 or £2 are not specified. Default:

1076.

MIDAS User Manual e intermod

reference — Reference level for power: amplitude of sinusoid corresponding to

0dB. Default: 0.5.

FUNCTION

This model is used to find the intermodulation products of two sinusoids when
passed through a nonlinear system. bandl and bandh specify a frequency win-
dow in which to evaluate intermodulation products and IMorder specifies the
order of interest of intermodulation. This model is based on a modified version
of the algorithm used in the disto model.

BUGS

Numerically unstable if the input sequence is longer than about ten million
samples.

101

mater . . o MIDAS User Manual

NAME

limiter — Hard clipper.

INPUT

X

ouTPUT

y
yd — Late (delayed) output.

PARAMETERS
x0 — Initial state (yd[0]). Default: 0.
min, max — Signal limits. Default: +oo.
FUNCTION

if x > max then y = max else
if x < min then y = min else
yd=y==x
EXAMPLE
The model line:
limiter (x<-input, y->output, min<-0)

limits the signal output to positive values of the signal input.

102

MIDAS User Manual........ e

NAME

limiterint — Hard clipper.

INPUT

x — An integer.

ouTPUT

v — An integer.
y — Late (delayed) output, an integer.

PARAMETERS
x0 — Initial state (y[0]). Default: 0.

min, max — Signal limits. Default: +oo.

FUNCTION

if x > max then y = max else
if x < min then y = min else
Yy=v=2x

EXAMPLE
The model line:

limiterint (x<-input, y->output, min<-0)

limits the signal output to positive values of the signal input.

limiterint

103

N iy . MIDAS User Manual

NAME

linfir — Linear phase finite impulse response filter.

INPUT

X

ouTPUT
y

PARAMETER

h — A vector containing the first half of the impulse response.

M — Decimation ratio. Default: 1.

skip — Number of outputs to be suppressed from initial transient. Default:
Filter order plus 1.

isodd — Filter has an even number of taps if isodd is 0, an odd number of taps
if isodd is non-zero. Default: 0.

FUNCTION
Let N be the number of elements in the vector h. Then if isodd is 0:

N-1
Ye = Z hi - (ki + ThooNt144)

=0
otherwise, if isodd is non-zero:

N-2

Yr = Z hi (ki + Th—aNt24+i) + AN—1° ThoNt1
=0

EXAMPLE

The model lines:

time (k->kT, kstop<-5);

impulse (t<-kT, y->imp);

linfir (x<-imp, h<-[1,2,3], skip<-0, y->y);
monitor (x<-y);

prints the impulse response of the filter, {1,2,3,3,2,1}, in the output file.

104

MIDAS User Manual....... e e e linfir

BUG

Does not support filters with an anti-symmetrical impulse response (see L. Ra-
biner and B. Gold: “Theory and Application of Digital Signal Processing”,
Prentice Hall, 1975, page 82, Case 2 for a description of the filter implemented).

105

Infirint ... MIDAS User Manual

NAME

linfirint — Linear phase finite impulse response filter with integer input.

INPUT

x — An integer.

ouTPUT
y

PARAMETER

h — A vector containing the first half of the impulse response.

M — Decimation ratio. Default: 1.

skip — Number of outputs to be suppressed from initial transient. Default:
Filter order plus 1.

isodd — Filter has an even number of taps if isodd is 0, an odd number of taps
if isodd is non-zero. Default: 0.

FUNCTION
Let N be the number of elements in the vector h. Then if isodd is 0:

N-1
Ye = Z hi - (ki + ThooNt144)

=0
otherwise, if isodd is non-zero:

N-2

Yr = Z hi (ki + Th—aNt24+i) + AN—1° ThoNt1
=0

EXAMPLE

The model lines:

time (k->kT, kstop<-5);

impulse (t<-kT, y->imp);

linfir (x<-imp, h<-[1,2,3], skip<-0, y->y);
monitor (x<-y);

prints the impulse response of the filter, {1,2,3,3,2,1}, in the output file.

106

MIDAS User Manual......... .. oo e et linfirint

BUG

Does not support filters with an anti-symmetrical impulse response (see L. Ra-
biner and B. Gold: “Theory and Application of Digital Signal Processing”,
Prentice Hall, 1975, page 82, Case 2 for a description of the filter implemented).

107

o AU MIDAS User Manual

NAME
1n — Output y is the natural logarithm of input x.

INPUT

X
OUTPUT

y
FUNCTION

y = In(z)
EXAMPLE

1n (x<-a, y->b);

BUG

The input x is clipped to a minimum value of 1073°.

108

MIDAS User Manual....... ... oo, matrix2vec

NAME

matrix2vec — Extract a column from a matrix.

INPUT

m — A matrix.

ouTPUT

v — A vector.

PARAMETER

col — Column number to be extracted. Default: 0.

FUNCTION

Output v is column number col of matrix m.

109

MatrIxIn ..o MIDAS User Manual

NAME

matrixIn — A clock whose output is data read from an input file.

PARAMETER
file — The input file.

ouTPUT

y — A matrix.

FUNCTION

The output pin y is set equal to the matrix read in from file. The first and
second elements in the input file must be the number of columns and the number
of rows in the matrix, respectively. y then acts as a clock signal for the netlist.
Therefore, there is no need for a time base model.

EXAMPLE
The input file:

NETLIST
matrixIn (file<- <data.dat>, y->nums);
print (x1<-nums, x2<-"\n");

END

prints the contents of the file “data.dat” to the standard output as a matrix.

110

MIDAS User Manual........ ..o e, max

NAME

max — Qutput y is the maximum value of all inputs x.

INPUT

X

ouTPUT

y — Maximum of all x, presented at the end of the simulation.

FUNCTION
y = max(x(k))

111

MAXININAL « .« .« et e e e e e MIDAS User Manual

NAME

maxinmat — Find the largest element in a particular column of a matrix, then
extract the row in which the element appears.

INPUT

m — A matrix.

ouTPUT

v — A vector.

PARAMETERS

col — Column in which to search for the maximum. Default: 0.
skip — Number of rows to skip before beginning the search. Default: 0.

FUNCTION

Output v is the row of m whose element col has the highest value in its column.

112

MIDAS User Manualo e maxint

NAME

maxint — Integer output y is the maximum value of all integer inputs x.
INPUT

x — An integer.
OUTPUT

y — Maximum of all x, presented at the end of the simulation.

FUNCTION
y = max(x(k))

113

TNAXITIVEC - e v v e e e e e e e e e e e e e e e e MIDAS User Manual

NAME

maxinvec — Find the largest element in a vector.

INPUT

v — A vector.

ouTPUT

y — Largest element in vector v, presented at the end of the simulation.

FUNCTION
Output y is the element of v with the highest value.

114

MIDAS User Manualo o i mean

NAME

mean — Qutput y is the mean of all the inputs x of a simulation.

INPUT

X

OuTPUT

y — Mean of all x, presented at the end of the simulation.
FUNCTION

y= % 2
EXAMPLE

The model lines:

time (k->kT, kstop<-10);
mean (x<-kT, y->Mean);
monitor (x<-Mean);

. « — ” : ‘e L 10 -
prints “Mean = 57, which is 7 3.2, 1.

BUG

No provision to obtain a running value of the mean during the simulation. Only
the final result can be seen at the end of the simulation.

115

19910 ¢ NPT MIDAS User Manual

NAME

min — Qutput y is the minimum value of all inputs x.

INPUT

X

ouTPUT

y — Minimum of all x, presented at the end of the simulation.

FUNCTION
y = min(a(k))

116

MIDAS User Manualo mininmat

NAME

mininmat — Find the smallest element in a particular column of a matrix, then
extract the row in which the element appears.

INPUT

m — A matrix.

ouTPUT

v — A vector.

PARAMETERS

col — Column in which to search for the minimum. Default: 0.
skip — Number of rows to skip before beginning the search. Default: 0.

FUNCTION

Output v is the row of m whose element col has the lowest value in its column.

117

INININE . e e e e MIDAS User Manual

NAME

minint — Integer output y is the minimum value of all integer inputs x.
INPUT

x — An integer.
OUTPUT

y — Minimum of all x, presented at the end of the simulation.

FUNCTION
y = min(a(k))

118

MIDAS User Manual e e e mininvec

NAME

mininvec — Find the smallest element in a vector.

INPUT

v — A vector.

ouTPUT

y — Smallest element in vector v, presented at the end of the simulation.

FUNCTION

Output y is the element of v with the lowest value.

119

NONIEOT « . o oottt e e e MIDAS User Manual

NAME

monitor — Prints the input x.

INPUT

x — An input of any value type.

PARAMETER

file — The output file; the default is stdout.

prec — Number of significant figures to use in output. Default: 5.

format — Format string. Equivalent to the standard C printf format string
without the leading “%”. The default is the “g” format with a precision
of prec and a length of prec plus six. If format is specified, it overrides
prec.

FUNCTION

Prints the name of the signal connected to x and the value of that signal followed
by a newline.

EXAMPLE

The model lines:

add (x1<-1, x2<-1, y->x);
monitor (x<-x, file<- <ex.dat, write>);

write “x = 2”7 to the file “ex.dat”.

BUG

No checks are performed on the parameter format. If it is incorrectly specified,

MIDAS will crash.

120

MIDAS User Manualo e e mul

NAME
mul — Qutput y is the product of inputs x1 and x2.

INPUTS

x1, x2
ouTPUT

y
FUNCTION

R W

EXAMPLE

mul (x1<-a, x2<-b, y->c);

121

UL . MIDAS User Manual

NAME
mul4 — Output y is the product of up to four inputs.

INPUTS

x1, x2, x3, x4 — Inputs. Default: 1.
OoOuTPUT

y
FUNCTION

Y=y Ty- T3 Ty

EXAMPLE
The model line:
muld (x1<-3, x2<-2, x3<-.5, y->y);

sets the output y to 3.

122

MIDAS User Manual. e e mul4int

NAME
mul4int — Output y is the integer product of up to four integers.

INPUTS
x1, x2, x3, x4 — Integers. Default: 1.

OUTPUT
y — An integer.

FUNCTION
Y=2T1 T2 T3 T4

EXAMPLE
The model line:
muld (x1<-3, x2<-2, x3<--1, y->y);

sets the output y to -6.

123

MUuldintN .. MIDAS User Manual

NAME
mul4intN— Qutput y is the n-bit, 2’s complement product of up to four integers.

INPUTS
x1, x2, x3, x4 — Integers. Default: 1.

ouTPUT

y — The n-bit integer output.

yfull — The non-truncated integer output.

overflow — Number of times an overflow has occurred.
underflow — Number of times an underflow has occurred.

PARAMETERS

n — Number of bits with which the output is represented. Default: 31.

clip — A flag indicating whether the output should change during an overflow
or underflow or remain clipped at the extremum. If clip is 0, the output
is clipped, otherwise it wraps around. Default: 0.

FUNCTION

If the product of the inputs is greater than the maximum, 2"~! — 1, or less than
the minimum, —2"71, allowed by an n-bit, 2’s complement representation, y
is either clipped at the extermum or allowed to wrap around in a 2’s comple-
ment fashion, depending on the value of the flag clip. Everytime an overflow
or underflow occurs, the overflow or the underflow output is incremented,
respectively.

BUG

The maximum value of n is machine dependent and is typically 31. If a greater
value is specified, the model automatically reduces n, without warning, to the
maximum supported by the platform on which the program is running.

124

MIDAS User Manual........ .. e e e mulint

NAME

mulint — Output y is the integer product of integers x1 and x2.

INPUTS

x1, x2 — Integers.

OUTPUT
y — An integer.

FUNCTION

Y=2T1- T2

125

MUulIntIN . MIDAS User Manual

NAME
mulintN - Output y is the n-bit, 2’s complement product of integers x1 and x2.

INPUTS

x1, x2 — Integers.

ouTPUT

y — The n-bit integer output.

yfull — The non-truncated integer output.

overflow — Number of times an overflow has occurred.
underflow — Number of times an underflow has occurred.

PARAMETERS

n — Number of bits with which the output is represented. Default: 31.

clip — A flag indicating whether the output should change during an overflow
or underflow or remain clipped at the extremum. If clip is 0, the output
is clipped, otherwise it wraps around. Default: 0.

FUNCTION

If the product of the inputs is greater than the maximum, 2"~! — 1, or less than
the minimum, —2"71, allowed by an n-bit, 2’s complement representation, y
is either clipped at the extermum or allowed to wrap around in a 2’s comple-
ment fashion, depending on the value of the flag clip. Everytime an overflow
or underflow occurs, the overflow or the underflow output is incremented,
respectively.

BUG

The maximum value of n is machine dependent and is typically 31. If a greater
value is specified, the model automatically reduces n, without warning, to the
maximum supported by the platform on which the program is running.

126

MIDAS User Manual e e, mux?2

NAME

mux2 — A 2-to-1 multiplexer.

INPUT

x1, x2 — Inputs.
sel — Selects between the two inputs.

ouTPUT
y

FUNCTION
If sel > 0.5, then y = x4, else y = x,.

127

0 P MIDAS User Manual

NAME
neg — Change the sign of the input.

INPUT

X
ouTPUT

y
FUNCTION

y=—x

EXAMPLE
The model file line:
neg (x<-5.2, y->out);

sets the value of out to -5.2.

128

MIDAS User Manualo e negint

NAME
negint — Change the sign of the integer input.

INPUT

x — An integer.

OUTPUT
y — An integer.

FUNCTION
y=-—c

EXAMPLE
The model file line:
neg (x<--5, y->out);

sets the value of out to 5.

129

Nuttalld0. . ..o MIDAS User Manual

NAME

Nuttall30 — A scaled window with 30dB/octave sidelobe decay. Intended for
use with the £ft and dft models.

INPUT

x — Input samples, floating point numbers.
xint — Input samples, integers.

OUTPUTS

w — A vector containing the windowed and scaled input samples, produced at
the end of the simulation.
N — The size of w, i.e., the number of samples used, an integer.

PARAMETERS

refernce — Reference level for power: amplitude of sinusoid corresponding to
0dB. Default: 0.5.

DFT — A flag indicating whether the output will be used with the £ft or the
dft model. If DFT is 0 the length of the output sequence is truncated to a
power of 2, otherwise it is unaltered. Default: 0.

FUNCTION

This model first stores a sequence of simulation results as a vector of input
samples. The x input pin should be used if the input is a real number and
the xint input pin should be used if the input in an integer. Upon completion
of the simulation, depending on the value of the DFT parameter, this vector is
either left unchanged or truncated so as to contain the first 2" samples, where
n is an integer between 1 and a machine dependent value, typically 31. Then
these samples are windowed using Nuttall’s 30dB/octave window. Finally, the
windowed samples are scaled such that when the FFT or DFT is taken, the
result will be the spectral power of the input normalized to the power of a
sinewave of amplitude given by the reference parameter.

EXAMPLE

The model lines:

Nuttall30 (x<-x, w->x_win);
fft (x<-x_win, fs<-fs, S->S);

130

MIDAS User Manual....... ... oo e Nuttall30

print (x1<-S);

print an estimate of the spectrum of x, which has a sampling rate of fs.

REFERENCE

A. Nuttall, “Some windows with very good sidelobe behavior,” IEEE Trans. on
Acoustics, Speech, and Signal Processing, vol. ASSP-29. pp. 84-91, February
1981. The particular window implemented is defined in equation (33) on page 88
of this reference.

131

OI1CS . . oottt e e e e e e MIDAS User Manual

NAME

ones — Qutput a one whenever the input changes.

INPUTS
t

OUTPUTS

y — Floating point output samples equal to 1.0.
yint — Integer output samples equal to 1.

FUNCTION

The outputs y and yint are set equal to one and triggered whenever the input
changes.

132

MIDAS User Manual e pad

NAME

pad — Pad a vector with a constant.

INPUT

x — The input vector.

ouTPUT

y — The output vector.
N — The length of the output vector.

PARAMETERS

num — Number of elements to pad. Default: 0.

val — Value of the padded elements. Default: 0.

DFT — A flag indicating whether the output will be used with the £ft or the
dft model. If DFT is 0 the length of the output sequence is truncated to a
power of 2, otherwise it is unaltered. Default: 0.

FUNCTION

Padding a sequence with zeros is used to increase the frequency resolution of
spectral analysis.

EXAMPLE

The model lines:

time (k->kT, kstop<-300, kstep<-1);

sin (t<-kT, y->sq, £<-0.23456, A<-2);
Nuttall30 (x<-sq, w->nutx, reference<-2);
pad (x<-nutx, y->nut, num<-4000);

fft (x<-nut, fs<-1, S->S);

print (x1<-S, x2<-"\n");

produce a 4096-point estimate of the input spectrum, 2048 points of which are
printed out by MIDAS. See the £ft model description for more information
regarding the output.

133

PAf. MIDAS User Manual

NAME
pdf — Computes the probability density function for the signal x.

INPUT

x — The input samples.

xint — The input samples, integers.
OUTPUTS

pdf — A matrix: column 0 is scale (middle of interval), column 1 is pdf.

PARAMETERS

min — Lower end of range of pdf. Default: —1.0.
max — Upper end of range of pdf. Default: +1.0.
resolution — Number of intervals (bins) for estimation. Default: 100.

FUNCTION

The inputs are placed in bins according to where they fit in the interval range.
The x input pin should be used if the inputs are real numbers and the xint input
pin should be used if the inputs are integers. The bins are then normalized so
that the sum of the bins multiplied by the bin width is one. This approximates
a probability density function.

134

MIDAS User Manual....... e e pow

NAME
pow — Output y is the ath power of input x.

INPUT

x
a — Default: 1.

ouTPUT
y
FUNCTION
y==c
EXAMPLE

pow (x<-x, a<-4, y->y);

135

POW BT . ittt ettt e e MIDAS User Manual

NAME

power — Output y is the average power of all the inputs x in a simulation.

INPUT

X

ouTPUT

y — Average power of all x, presented at the end of the simulation.
dB — Average power of all x in dB, presented at the end of the simulation. (0dB
corresponds to an average power of 1.)

FUNCTION
y= % DDF «’1722
EXAMPLE

The model lines:

time (k->kT, kstop<-5);
power (x<-kT, y->Power);
monitor (x<-Power);

prints “Power = 9.167”, which is & Y7_ %

BUG

No provision to obtain a running value of the power during the simulation. Only
the final result can be seen at the end of the simulation.

136

MIDAS User Manual........ e powint

NAME

powint — Integer output y is the ath power of integer input x.

INPUT

x — An integer.
a — An integer. Default: 1.

OouUTPUT
y — An integer.

FUNCTION
y=z*
EXAMPLE

powint (x<-x, a<-4, y->y);

137

PIINt MIDAS User Manual

NAME

print — Prints its arguments.

INPUTS

xi — A signal of any type. The 1 in xi can be blank or any digit from 1 to 9.
trigger — Synchronize printing with change of this signal.

PARAMETERS

file — The output file. Default: stdout.

prec — Number of significant figures to use in output. Default: 5.

format — Format string. Equivalent to the standard C printf format string
without the leading “%”. The default is the “g” format with a precision
of prec and a length of prec plus six. If format is specified, it overrides
prec.

transpose — If transpose is 0, vectors are printed as row vectors and matrices
are printed row-wise. If transpose is not 0, vectors are printed as column
vectors and matrices are printed column-wise. Default: 0.

FUNCTION
Prints each argument in order x, x1, x2, This model always prints all of its
arguments at once. By default, printing occurs when at least one input changes.
Alternatively, a trigger signal can be specified.

EXAMPLE

The model lines:

add (x1<-1, x2<-1, y->y);
print (x1<-"Y = ", x2<-y, x3<-" dB\n");

prints “Y = 2 dB”, followed by a newline.

BUG

No checks are performed on the parameter format. If it is incorrectly specified,

MIDAS will crash.

138

MIDAS User Manual....... ..o e pulse

NAME

pulse — Pulse train signal source.

INPUT
x — Triggers the output.

OUTPUTS
y

yint — An integer.
PARAMETERS

M — Number of clock samples in pulse period. Default: 1.

W — Number of clock samples in pulse width. Default: 1.

D — Number of clock samples of delay before the first period starts. Default: 0.
scale — Output value when the output is active. Default: 1.

FUNCTION

The output y is 0 for D samples. The clock period then begins with the output
equal to scale for W samples and equal to 0 for M — W samples. The output
is periodic thereafter.

EXAMPLE
The model line:

time (t->kT, kstep<-1, kstop<-14);
pulse (x<-kT, y->out, M<-3, W<-2, D<-4, scale<-2.2);

produces the following sequence:

00002.22.202.22.202.22.202.22.2

139

pureDelay MIDAS User Manual

NAME
pureDelay — Output y is x1 delayed by one clock cycle.

INPUT

x1

OUTPUTS

y — Delayed (late) output.
v — Immediate output.

PARAMETER
x0 — Initial state (y[0]). Default: 0.

FUNCTION

ok +1] = 1]
v[k] = z1[k]

EXAMPLE

pureDelay (x1<-input, y->output);

140

MIDAS User Manual.... e quant

NAME

quant — Two level quantizer.

INPUT

X

ouTPUT
y

PARAMETERS

yp — Output level for positive input. Default: +0.5.
ym — Output level for negative input. Default: —0.5.
hysteresis — Default: 0.

FUNCTION
if (|z] < hysteresis/2) then y=last y
else if (> 0) then y=yp
else y=ym
The initial “last y” is defined to be yp.

141

quantint...... MIDAS User Manual

NAME

quantint — Two level quantizer with integer input and output.

INPUT

x — Input signal, an integer.

OoOuTPUT
y — Output signal, an integer.

PARAMETERS

yp — Output level for positive input. Default: +1.
ym — Output level for negative input. Default: —1.
hysteresis — Default: 0.

FUNCTION
if (|z| < hysteresis/2) then y =last y
else if (> 0) then y=yp
else y=ym
The initial “last y” is defined to be yp.

142

MIDAS User Manual....... .. . e quantizer

NAME

quantizer — Arbitrary shape quantizer.

INPUT

X
ouTPUT

y
PARAMETERS

xx — A vector whose elements are the input bin boundaries.
yy — A vector whose elements are the ouput values (dimension: 1 longer than
XX).

FUNCTION

if x < xg then y = yq else
if x < x1 then y = y; else

if x <z, then y =y, else
Y= Yn+1
BUG

Values of xx must rise monotonically for the output y to make sense.

SEE ALSO

quantUniform

143

quantizerint MIDAS User Manual

NAME

quantizerint — Arbitrary shape quantizer with integer input and output.

INPUT

x — An integer.

OuUTPUT
y — An integer.

PARAMETERS

xx — A vector whose elements are the input bin boundaries.
yy — A vector whose elements are the ouput values (dimension: 1 longer than
XX).

FUNCTION

if x < xg then y = yq else
if x < x1 then y = y; else

if x <z, then y =y, else
Y= Yn+1
BUG

Values of xx must rise monotonically for the output y to make sense.

SEE ALSO

quantUniform

144

MIDAS User Manual e quantnlave

NAME

quantnlave — A quantizer composed of an ideal ADC and a DAC with random
mismatches. The polarity of the mismatches alternates every time a level
is reached.

INPUT

x — Input signal.

ouTPUT

y — Output signal.
levels — Vector containing the output levels. Available at the end of the
simulation.

PARAMETERS

bottomRail — Lowest output signal level. Default: -0.5.

topRail — Highest output signal level. Default: +0.5.

numBins — Number of bins in the quantizer. Default: 2.

linearity — Standard deviation of mismatch in LSB’s. Default: 0.
seed — Seed for radom number generator. Default: 1.

FUNCTION

This model is similar to the quantnldac model except that the polarity of the
error at each quantizer output level is toggled everytime that level is invoked.

SEE ALSO

quantnldac, quantUniform

145

quantnldac....... MIDAS User Manual

NAME

quantnldac — A quantizer composed of an ideal ADC and a DAC with random
mismatches.

INPUT

x — Input signal.

ouTPUT

y — Output signal.
levels — Vector containing the output levels. Available at the end of the
simulation.

PARAMETERS

bottomRail — Lowest output signal level. Default: -0.5.

topRail — Highest output signal level. Default: +0.5.

numBins — Number of bins in the quantizer. Default: 2.

linearity — Standard deviation of mismatch in LSB’s. Default: 0.
seed — Seed for radom number generator. Default: 1.

FUNCTION

This model is similar to the quantUniform model except that when the output
levels are computed, a Gaussian random number is added to each of the ideal
levels. These output levels are then used throught the simulation. The mean
of the random variable is 0 and its standard deviation is equal to the quantizer
LSB multiplied by the linearity parameter, as shown below:

_ topRail — bottom Rail

numBins — 1

o - linearity

SEE ALSO

quantUniform

146

MIDAS User Manual. quantUniform

NAME

quantUniform — Uniform quantizer.

INPUT

x — Input signal.

OUTPUT
y — Output signal.

PARAMETERS

bottomRail — Lowest output signal level. Default: -0.5.
topRail — Highest output signal level. Default: +0.5.
numBins — Number of bins in the quantizer. Default: 2.

FUNCTION

Let: : .
topRazl — bottom Raztl

numBins — 1

binSize =

Then for inputs within the two rails:

. (3: — bottom Razl
y =in

binSize

) - binSize + bottom Razl

where the “int” function rounds to the nearest integer. If the input is outside
the two rails, it is clipped at the nearest rail.

147

quantUniformint MIDAS User Manual

NAME

quantUniformint — Uniform quantizer with integer input and output.

INPUT

x — Input signal, an integer.

OoOuTPUT
y — Output signal, an integer.

PARAMETERS

bottomRail — Lowest output signal level. Default: -1.
topRail — Highest output signal level. Default: +1.
numBins — Number of bins in the quantizer. Default: 2.

FUNCTION

Let: : .
topRazl — bottom Raztl

numBins — 1

binSize =

Then for inputs within the two rails:

. (3: — bottom Razl
y =in

binSize

) - binSize + bottom Razl

where the “int” function rounds to the nearest integer. If the input is outside
the two rails, it is clipped at the nearest rail.

148

MIDAS User Manual...... ... o i, rectangular

NAME

rectangular — A scaled rectangular window. Intended for use with the £ft and
dft models. This model is included for completeness; it is almost always
better to use a different windowing function.

INPUT

x — Input samples, floating point numbers.
xint — Input samples, integers.

OUTPUTS

w — A vector containing the windowed and scaled input samples, produced at
the end of the simulation.
N — The size of w, i.e., the number of samples used, an integer.

PARAMETERS

refernce — Reference level for power: amplitude of sinusoid corresponding to
0dB. Default: 0.5.

DFT — A flag indicating whether the output will be used with the £ft or the
dft model. If DFT is 0 the length of the output sequence is truncated to a
power of 2, otherwise it is unaltered. Default: 0.

FUNCTION

This model first stores a sequence of simulation results as a vector of input
samples. The x input pin should be used if the input is a real number and the
xint input pin should be used if the input in an integer. Upon completion of the
simulation, depending on the value of the DFT parameter, this vector is either
left unchanged or truncated so as to contain the first 2" samples, where n is
an integer between 1 and a machine dependent value, typically 31. Then these
samples are windowed using the rectangular window. Finally, the windowed
samples are scaled such that when the FFT or DFT is taken, the result will
be the spectral power of the input normalized to the power of a sinewave of
amplitude given by the reference parameter.

EXAMPLE
The model lines:

rectangular (x<—x, W—>x_win);

149

rectangular........ .. o MIDAS User Manual

fft (x<-x_win, fs<-fs, S->S);
print (x1<-S);

print an estimate of the spectrum of x, which has a sampling rate of fs.

SEE ALSO
Nuttall30

REFERENCE

A. Oppenheim and R. Schafer, “Discrete-Time Signal Processing,” Prentice
Hall, 1989.

150

MIDAS User Manualo e e settle

NAME

settle — Slew rate limited exponential response model.

INPUT

x — Input samples.

ouTPUT

y — x after passing though the slew limiting and exponential response element.

PARAMETERS

T — Total response time, in seconds. Default: 10072,
tau — Exponential time constant, in seconds. Default: 1072,
s — Slew rate, in volts per second. Default: 10076,

FUNCTION

Device has response y = (1 — e~T/7) with the rate of change for entire expo-
nential limited to s/T. T is the time available for the integrator response and
is typically one half the sampling period.

EXAMPLE
The model lines:

mul (x1<-input, x2<-0.5, y->hlf);
settle (x<-hlf, y->response, T<-60e-9, tau<-10e-9, s<-7e6);
delay (x1<-response, x2<-output, y->output)

create an integrator with gain of 0.5, settling time constant of 10ns, and slew
rate of 7V/us in a 60ns integration phase.

BUGS

Since the exponential portion of the response is modelled as perfectly linear,
analysis with this model suggests that a high resolution sigma-delta modulator
can be constructed with low bandwidth and high slew rate integrators. In
practice, exponential response is never perfectly linear and high resolution data
conversion is difficult to achieve with low bandwidth integrators.

151

ShIft .« MIDAS User Manual

NAME

shift — Perform a binary shift on an integer.

INPUT

X
ouTPUT

y
PARAMETER

n — Number of positions to shift the input. A negative n results in a right shift
and a positive n results in a left shift. Default: 0.

FUNCTION

A left shift is equivalent to multiply by 2 and a right shift is equivalent to divide
by 2 where the remainder is discarded.

152

MIDAS User Manual....... .. . e sigmal

NAME

sigmal — A first order sigma-delta modulator.

INPUT

x — Input of modulator.

OUTPUTS

y — Output of quantizer.
q — Output of D/A; equal to G times y.
u — Output of integrator; at the input of the quantizer.

PARAMETERS

a — Gain of integrator. Default: 1.
G — Gain of D/A. Default: 1.
u0 — Initial value of u. Default: 0.

FUNCTION

This model is equivalent to the model lines:

sub (x1<-x, x2<-q, y->internall);

delay (x1<-internall, x2<-u, y->u, cl<-a, x0<-u0);
quant (x<-u, y->y);

mul (x1<-y, x2<-G, y->q);

153

SIGIMIAZ . L it e MIDAS User Manual

NAME

sigma2 — A second order sigma-delta modulator.

INPUT

x — Input of modulator.

OUTPUTS

y — Output of quantizer.

q — Output of D/A; equal to G times y.
ul — Output of first integrator.

u2 — Output of second integrator.

PARAMETERS

al — Gain of first integrator.
a2 — Gain of second integrator.
G — Gain of D/A.

ul 0 — Initial value of ul.

u2_0 — Initial value of u2.

FUNCTION

This model is equivalent to the model lines:
sub (x1<-x, x2<-q, y->internall);
delay (x1<-internall, x2<-ul, y->ul, cl<-al, x0<-ul_0);
sub (x1<-ul, x2<-q, y->internal?2);
delay (x1<-internal2, x2<-u2, y->u2, cl<-a2, x0<-u2_0);
quant (x<-u2, y->y);
mul (x1<-y, x2<-G, y->q);

154

MIDAS User Manualo e e e sin

NAME

sin — Sampled sinusoidal waveform generator.

INPUT

t — Time.
OouTPUT

y

PARAMETERS

A — Amplitude of sinusoid with gain at 0dB. Default: 1.0.
gain — Modify amplitude of sinusoid by gain dB. Default: 0.
f — Frequency. Default: 1.0.

FUNCTION
y = A-1099n/20 . sin(2x ft)

EXAMPLE

The model lines:

sin (t<-1/4000, A<-5, £<-1000, y->0ut);
monitor (x<-0Out);

print “Out = 5.000”.

155

SIIIC S . oot MIDAS User Manual

NAME

sinc3 — Linear phase comb-type decimation filter.

INPUT

X

ouTPUT
y

PARAMETERS

M — Decimation ratio, > 1. Default: 1.
skip — Number of outputs from initial transient to be suppressed. Default: 3
(i.e. skip entire initial transient).

FUNCTION
Implements the following filter transfer function:
1 Mo, 3
H(z) = (H kzz:o z)

The output y is x filtered and decimated by the factor M.

EXAMPLE

The model lines:

time (k->kT, kstop<-20);

impulse (t<-kT, y->x);

sinc3 (x<-x, y->y, skip<-0, M<-8);
monitor (x<-y);

print:
y = 0.070313
y = 0.054688
to stdout.

156

MIDAS User Manual.......... oo e e sinc3int

NAME

sinc3int — Linear phase comb-type decimation filter with integer input.

INPUT

x — An integer.

ouTPUT
y

PARAMETERS

M — Decimation ratio, > 1. Default: 1.
skip — Number of outputs from initial transient to be suppressed. Default: 3
(i.e. skip entire initial transient).

FUNCTION
Implements the following filter transfer function:
1 Mo, 3
H(z) = (H ,CZ:% z)

The output y is x filtered and decimated by the factor M.

EXAMPLE

The model lines:

time (k->kT, kstop<-20);

impulse (t<-kT, y->x);

sinc3 (x<-x, y->y, skip<-0, M<-8);
monitor (x<-y);

print:
y = 0.070313
y = 0.054688
to stdout.

157

SITICA . o o oo et MIDAS User Manual

NAME

sinc4 — Linear phase comb-type decimation filter.

INPUT

X

ouTPUT
y

PARAMETER

M — Decimation ratio, > 1. Default: 1.
skip — Number of outputs from initial transient to be suppressed. Default: 4
(i.e. skip entire initial transient).

FUNCTION
Implements the following filter transfer function:
1 Mo, 4
H(z) = (H kzz:o z)

The output y is x filtered and decimated by the factor M.

EXAMPLE

The model lines:

time (k->kT, kstop<-20);

impulse (t<-kT, y->x);

sinc4 (x<-x, y->y, skip<-0, M<-8);
monitor (x<-y);

print:
y = 0.029297
y = 0.082031
to stdout.

158

MIDAS User Manual.......... oo e e sinc4int

NAME

sinc4int — Linear phase comb-type decimation filter with integer input.

INPUT

x — An integer.

ouTPUT
y

PARAMETER

M — Decimation ratio, > 1. Default: 1.
skip — Number of outputs from initial transient to be suppressed. Default: 4
(i.e. skip entire initial transient).

FUNCTION
Implements the following filter transfer function:
1 Mo, 4
H(z) = (H ,CZ:% z)

The output y is x filtered and decimated by the factor M.

EXAMPLE

The model lines:

time (k->kT, kstop<-20);

impulse (t<-kT, y->x);

sinc4 (x<-x, y->y, skip<-0, M<-8);
monitor (x<-y);

print:
y = 0.029297
y = 0.082031
to stdout.

159

SINCIN o MIDAS User Manual

NAME

sincN — Linear phase comb-type decimation filter.

INPUT

X

ouTPUT
y

PARAMETERS

M — Decimation ratio, > 1. Default: 1.

N — Filter order. Default: 1.

skip — Number of outputs from initial transient to be suppressed. Default: N
(i.e. skip entire initial transient).

FUNCTION
Implements the following filter transfer function:
H(z) (! Mz_:l Z_k)N
M =

The output y is x filtered and decimated by factor M.

EXAMPLE

The model lines:

time (k->kT, kstop<-20);

impulse (t<-kT, y->x);

sincN (x<-x, y->y, skip<-0, M<-8, N<-3);
monitor (x<-y);

print:
y = 0.070313
y = 0.054688
to stdout.

160

MIDAS User Manual....... ... oo i sincNint

NAME

sincNint — Linear phase comb-type decimation filter with integer input.

INPUT

x — An integer.

ouTPUT
y

PARAMETERS

M — Decimation ratio, > 1. Default: 1.

N — Filter order. Default: 1.

skip — Number of outputs from initial transient to be suppressed. Default: N
(i.e. skip entire initial transient).

FUNCTION
Implements the following filter transfer function:
H(z) (! Mz_:l Z_k)N
M =

The output y is x filtered and decimated by factor M.

EXAMPLE

The model lines:

time (k->kT, kstop<-20);

impulse (t<-kT, y->x);

sincN (x<-x, y->y, skip<-0, M<-8, N<-3);
monitor (x<-y);

print:
y = 0.070313
y = 0.054688
to stdout.

161

.. MIDAS User Manual

NAME

sinN — Sampled sinusoidal waveform generator. The output is an n-bit, 2’s
complement integer.

INPUT

t — Time, a floating point number.

ouTPUT

y — The n-bit integer output.

yfull — The non-truncated integer output.

overflow — Number of times an overflow has occurred.
underflow — Number of times an underflow has occurred.

PARAMETERS

A — Amplitude of sinusoid with gain at 0dB. Default: 1.0.

gain — Modify amplitude of sinusoid by gain dB. Default: 0.

f — Frequency. Default: 1.0.

phase — Phase in radians. Default: 0.0.

n — Number of bits with which the output is represented. Default: 31.

clip — A flag indicating whether the output should change during an overflow
or underflow or remain clipped at the extremum. If clip is 0, the output
is clipped, otherwise it wraps around. Default: 0.

FUNCTION

The output is first computed according to the following equation:
y = A- 1092 . gin(2x ft + phase)

and converted to an integer. Then, if y is greater than the maximum, 27~ — 1,
or less than the minimum, —27~1, allowed by an n-bit, 2’s complement repre-
sentation, y is either clipped at the extermum or allowed to wrap around in
a 2’s complement fashion, depending on the value of the flag clip. Every-
time an overflow or underflow occurs, the overflow or the underflow output
is incremented, respectively.

BUG

162

MIDAS User Manual e e sinN

The maximum value of n is machine dependent and is typically 31. If a greater
value is specified, the model automatically reduces n, without warning, to the
maximum supported by the platform on which the program is running.

163

SININZINIS .« ottt e MIDAS User Manual

NAME

sinNzins — Sampled sinusoidal waveform generator with zero insertion. Output
y is the n-bit, 2’s complement sum of integer inputs x1 and x2.

INPUT

t — Time.

ouTPUT

y — The n-bit integer output.

yfull — The non-truncated integer output.

overflow — Number of times an overflow has occurred.
underflow — Number of times an underflow has occurred.

PARAMETERS

A — Amplitude of sinusoid with gain at 0dB. Default: 1.0.

gain — Modify amplitude of sinusoid by gain dB. Default: 0.

f — Frequency. Default: 1.0.

phase — Phase in radians. Default: 0.0.

n — Number of bits with which the output is represented. Default: 31.

clip — A flag indicating whether the output should change during an overflow
or underflow or remain clipped at the extremum. If clip is 0, the output
is clipped, otherwise it wraps around. Default: 0.

M - In every M output samples M-1 zeros are inserted. Default: 1.0.

FUNCTION

At the first input sample and at every M samples after that, the output is
generated according to:

y = A- 1099/ sin(27 ft + phase)

and converted to an integer. For all other samples, the output is equal to 0.
Then, if y is greater than the maximum, 2"~! — 1, or less than the minimum,
—27~1 allowed by an n-bit, 2’s complement representation, y is either clipped at
the extermum or allowed to wrap around in a 2’s complement fashion, depending
on the value of the flag clip. Everytime an overflow or underflow occurs, the
overflow or the underflow output is incremented, respectively.

SEE ALSO

164

MIDAS User Manual........ ... e e sinNzins

sinzins, sinzoh, sinNzoh

165

SININZON .« . MIDAS User Manual

NAME

sinNzoh — Sampled sinusoidal waveform generator with zero insertion. Output
y is the n-bit, 2’s complement sum of integer inputs x1 and x2.

INPUT

t — Time.

ouTPUT

y — The n-bit integer output.

yfull — The non-truncated integer output.

overflow — Number of times an overflow has occurred.
underflow — Number of times an underflow has occurred.

PARAMETERS

A — Amplitude of sinusoid with gain at 0dB. Default: 1.0.

gain — Modify amplitude of sinusoid by gain dB. Default: 0.

f — Frequency. Default: 1.0.

phase — Phase in radians. Default: 0.0.

n — Number of bits with which the output is represented. Default: 31.

clip — A flag indicating whether the output should change during an overflow
or underflow or remain clipped at the extremum. If clip is 0, the output
is clipped, otherwise it wraps around. Default: 0.

M — Output is held constant for M samples. Default: 1.0.

FUNCTION

At the first input sample and at every M samples after that, the output is
generated according to:

y = A- 109"/ . gin(2x ft + phase)

and converted to an integer. For all other samples, the output is held constant
at its previous value. Then, if y is greater than the maximum, 2"~1 — 1, or less
than the minimum, —27~!, allowed by an n-bit, 2’s complement representation,
y is either clipped at the extermum or allowed to wrap around in a 2’s comple-
ment fashion, depending on the value of the flag clip. Everytime an overflow
or underflow occurs, the overflow or the underflow output is incremented,
respectively.

166

MIDAS User Manualo i sinNzoh

SEE ALSO

sinzins, sinzoh, sinNzins

167

SIMZITIS -« o e e et et e e e e e e e MIDAS User Manual

NAME

sinzins — Sampled sinusoidal waveform generator with zero insertion.

INPUT

t — Time.
ouTPUT
y

PARAMETERS

A — Amplitude of sinusoid with gain at 0dB. Default: 1.0.
gain — Modify amplitude of sinusoid by gain dB. Default: 0.
f — Frequency. Default: 1.0.
phase — Phase in radians. Default: 0.0.
M — In every M output samples M-1 zeros are inserted. Default: 1.0.
FUNCTION
At the first input sample and at every M samples after that, the output is
generated according to:
y = A - 10992 . sin (27 ft + phase).

For all other samples, the output is equal to 0.

EXAMPLE

The model lines:

time (k->kT, kstart<-0.1, kstep<-0.11, kstop<-0.9);
sinzins (t<-kT, y->y, M<-3);
monitor (x<-y);

print:

0.58779
= 0
= 0
0.42578
= 0
= 0

N <Y<Y <9<
|

168

MIDAS User Manual........ ... e e sinzins

y = -0.99803
y = 0
to stdout.
SEE ALSO

sinzins2comp, sinzoh, sinzoh2comp

169

SINZOh . .o MIDAS User Manual

NAME

sinzoh — Sampled sinusoidal waveform generator with zero-order hold.

INPUT

t — Time.
OouTPUT
y

PARAMETERS

A — Amplitude of sinusoid with gain at 0dB. Default: 1.0.
gain — Modify amplitude of sinusoid by gain dB. Default: 0.
f — Frequency. Default: 1.0.

phase — Phase in radians. Default: 0.0.

M — Output is held constant for M samples. Default: 1.0.

FUNCTION

At the first input sample and at every M samples after that, the output is
generated according to:

y = A- 109920 . sin(2x ft + phase).
For all other samples, the output is held constant at its previous value.

EXAMPLE

The model lines:

time (k->kT, kstart<-0.1, kstep<-0.11, kstop<-0.9);
sinzins (t<-kT, y->y, M<-3);
monitor (x<-y);

print:

.58779
.58779
.58779
.42578
.42578
.42578

WM <Y<Y<E <
|
O O O O O O

170

MIDAS User Manual e e sinzoh

y = -0.99803
vy = -0.99803
to stdout.
SEE ALSO

sinzins, sinzoh2comp, sinzoh2comp

171

SKID - e MIDAS User Manual

NAME

skip — Skip initial transient.

INPUT

X
ouTPUT

y
PARAMETER

skip — Number of outputs from initial transient to be suppressed. Default: 1.

172

MIDAS User Manual....... e skipint

NAME

skipint — Skip initial transient for integers.
INPUT

x — An integer.
OUTPUT

y — An integer.

PARAMETER

skip — Number of outputs from initial transient to be suppressed. Default: 1.

173

T) AP MIDAS User Manual

NAME
sqrt — Output y is the square root of the input x.

INPUT
X
OUTPUT
y
FUNCTION
y =/l
EXAMPLE
sqrt (x<-a, y->b);

174

MIDAS User Manual e e e sub

NAME
sub — Output y is the difference of the inputs x1 and x2.

INPUTS

x1, x2
ouTPUT

y
FUNCTION

y ==zl — a2

EXAMPLE

sub (x1<-a, x2<-b, y->c);

175

SUDING .« oo MIDAS User Manual

NAME

subint — Output y is the integer difference of integer inputs x1 and x2.

INPUTS

x1, x2 — Integers.
ouTPUT

y — An integer.
FUNCTION

y=uzl — a2

EXAMPLE

subint (x1<-a, x2<-b, y->c);

176

MIDAS User Manual o e subintN

NAME
subintN — Output y is the n-bit, 2’s complement difference of integer inputs x1
and x2.
INPUTS

x1, x2 — Integers.

ouTPUT

y — The n-bit integer output.

yfull — The non-truncated integer output.

overflow — Number of times an overflow has occurred.
underflow — Number of times an underflow has occurred.

PARAMETERS

n — Number of bits with which the output is represented. Default: 31.

clip — A flag indicating whether the output should change during an overflow
or underflow or remain clipped at the extremum. If clip is 0, the output
is clipped, otherwise it wraps around. Default: 0.

FUNCTION

If the difference of the inputs is greater than the maximum, 2”71 — 1, or less
than the minimum, —2"~!, allowed by an n-bit, 2’s complement representation,
y is either clipped at the extermum or allowed to wrap around in a 2’s comple-
ment fashion, depending on the value of the flag clip. Everytime an overflow
or underflow occurs, the overflow or the underflow output is incremented,
respectively.

BUG

The maximum value of n is machine dependent and is typically 31. If a greater
value is specified, the model automatically reduces n, without warning, to the
maximum supported by the platform on which the program is running.

177

tapDelay MIDAS User Manual

NAME
tapDelay — A tapped delay line filter.

INPUT

X

OUTPUTS

y — Filter output.
x1, x2, x3, x4 — Delayed versions of x.

PARAMETERS

a0, al, a2, a3, a4 — Filter parameters. Default: 0.
x1.0, x2.0, x3.0, x4 0 — Initial values for x1 - x4. Default: 0.

FUNCTION
y==xz-(ap+ a1zt +azz7? + azz™> + ay2z7?)
z; = xz7 !
Tg = xz 72
T3 =x273
T4 =227
EXAMPLE

The model line:
tapDelay (a0<-1, al<-(-2), a2<-1, x<-x, y->y);

creates the function:
y=(1-=27")

178

MIDAS User Manual i, tapDelayint

NAME
tapDelayint — A tapped delay line filter with integer input and output.

INPUT

x — An integer.

OUTPUTS

y — Filter output, an integer.
x1, x2, x3, x4 — Delayed versions of x.

PARAMETERS

a0, al, a2, a3, a4 — Filter parameters. Default: 0.
x1.0, x2.0, x3.0, x4 0 — Initial values for x1 - x4. Default: 0.

FUNCTION
y==xz-(ap+ a1zt +azz7? + azz™> + agz7?)
z; = xz7 !
Tg = xz 72
T3 =x273
T4 =227
EXAMPLE

The model line:
tapDelayint (a0<-1, al<-(-2), a2<-1, x<-x, y->y);

creates the function:
y=(1-=27")

179

NAME

time — Discrete time generator.

PARAMETERS

kstart — Initial value of k. Default: 0.
kstop — Final value of k. Default: 0.
kstep — Time interval. Default: 1.0.

ouTPUT

FUNCTION

EXAMPLE

180

k — Time step.

MIDAS User Manual

time is called during every simulation cycle and generates the sequence:

k = kstart

k = kstart + kstep
k = kstart + 2 kstep

k > kstop

The model lines:

time (k->kT, kstep<-0.5, kstop<-2.5);
monitor (x<-kT);

print the sequence:

kT
kT
kT
kT
kT
kT

0

NN NP~ O

.000
.500
.000
.500
.000
.500

MIDAS User Manual e timeint

NAME

timeint — Discrete time generator with integer outputs.

PARAMETERS

kstart — Initial value of k. Default: 0.

kstop — Final value of k. Default: 0.

kstep — Time interval. Default: 1.0.
OUTPUT

k — Time step, an integer.

FUNCTION
time is called during every simulation cycle and generates the sequence:

k = kstart
k = kstart + kstep
k = kstart + 2 kstep

k > kstop

EXAMPLE

The model lines:

timeint (k->kT, kstep<-1, kstop<-4);
monitor (x<-kT);

print the sequence:

kT = 0
kT =1
kT = 2
kT = 3
kT = 4

181

UNITOTTI « oo MIDAS User Manual

NAME

uniform — Uniform random number generator.

INPUT

t — Clock (a random number is generated for every occurrance of t).
ouTPUT

y
PARAMETERS

mean — Mean of the random numbers. Default: 0.
range — Range of the random numbers (largest minus smallest). Default: 1.
seed — Seed for random number generator. Default: 1.

FUNCTION
(Generates random numbers with uniform distribution in interval:
range range
mean — 5 -+« mean + 5

EXAMPLE
The model lines:

time (k->kT, kstart<-1, kstop<-10);
uniform (t<-kT, y->y);
monitor (x<-y);

print out ten random numbers in interval £0.5.

BUG

This model is based on the standard UNIX function “random.c”; results might
be incorrect on other systems. See the UNIX manual for the properties of
“random”.

182

MIDAS User Manual......... ... e variance

NAME

variance — Qutput y is the variance of all the inputs x in a simulation.

INPUT

X

ouTPUT

y — Variance of all x, presented at the end of the simulation.
dB — Variance of all x in dB, presented at the end of the simulation. (0dB
corresponds to a variance of 1.)

FUNCTION

1 1
yzﬁziw?—ﬁzixi

183

vectorIn ... MIDAS User Manual

NAME

vectorIn — A clock whose output is data read from an input file.

PARAMETER
file — The input file.

OouUTPUT
y — A vector.

FUNCTION

The output pin y is set equal to the vector read in from file. The length of
the vector need not be specified explicitly. y then acts as a clock signal for the
netlist. Therefore, there is no need for a time base model.

EXAMPLE
The input file:

NETLIST
vectorIn (file<- <data.dat>, y->nums);
print (x1<-nums, x2<-"\n");

END

prints the contents of the file “data.dat” to the standard output as a vector.

184

MIDAS User Manual....... ... e e e e Zeros

NAME

zeros — OQutput a zero whenever the input changes.

INPUTS
t

OUTPUTS

y — Floating point output samples equal to 0.0.
yint — Integer output samples equal to 0.

FUNCTION

The outputs y and yint are set equal to zero and triggered whenever the input
changes.

185

ZITIS o e et e e MIDAS User Manual

NAME

zins — Zero insertion.

INPUT

x — Input.
clk — Trigger.

ouTPUT
y
PARAMETERS

M — In every M output samples M-1 zeros are inserted. Default: 1.0.

FUNCTION

Output y is triggered every cycle that x or clk change but is set equal to the
input every M cycles and is equal to zero otherwise.

186

MIDAS User Manual....... e e zinsint

NAME

zinsint — Zero insertion with integer input and output.

INPUT

x — Input, an integer.
clk — Trigger, an integer.

OuUTPUT
y — An integer.

PARAMETERS

M — In every M output samples M-1 zeros are inserted. Default: 1.0.

FUNCTION

Output y is triggered every cycle that x or clk change but is set equal to the
input every M cycles and is equal to zero otherwise.

187

ZO MIDAS User Manual

NAME
zoh — Zero-order hold.

INPUT

x — Input.
clk — Trigger.

ouTPUT
y
PARAMETERS

M — Output is held constant for M samples. Default: 1.0.

FUNCTION

Output y is triggered every cycle that x or clk change but is set equal to the
input every M cycles and is held constant at its previous value otherwise.

188

MIDAS User Manual e zohint

NAME

zohint — Zero-order hold with integer input and output.

INPUT

x — Input, an integer.
clk — Trigger, an integer.

OUTPUT
y — An integer.
PARAMETERS

M — Output is held constant for M samples. Default: 1.0.

FUNCTION

Output y is triggered every cycle that x or clk change but is set equal to the
input every M cycles and is held constant at its previous value otherwise.

189

